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Classic RM cannot deal with epistemic uncertainty

Aleatoric uncertainty: “[...] unknowns that differ Epistemic uncertainty: “[...] things we could in
each time we run the same experiment.” principle know but do not in practice.”
— Wikipedia — Wikipedia

Example: Example:

« Mean demand u = 100 e Mean demand p ~ N (100, 20%)

 Demand realization X ~ Pois(u) * Demand realization X ~ Pois(u)

« Dynamic program takes this into account « Standard RM methods cannot deal with this
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Example scenario
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Example scenario

* Time horizon: t € [0,100]

« Capacity: 100

* Expected demand (Poisson): 120

» Exponential WTP with two customer segments
» Dynamic pricing
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Sample trajectories and bid price distribution

Sample paths
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Sim_ulation-based
reinforcement
learning
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Standard RM process

Bookings, revenue

Demand forecast Real world

Expected demand

Network optimization

Bid priCes E
Bid price control 1 _/

Prices t
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Full Reinforcement Learning

Bookings, revenue

Real world

/_\
Reinforcement % E

learning model ° )

Prices t

See for example: Acuna-Agost & Fiig, AGIFORS RM 2017

DDS
E EWN : ©2021 PROS, Inc. All rights reserved. Confidential and Proprietary

I page 10



Simulation-based RL (this work)

Samples from Bookings, revenue

{
demand distribution ‘
1 Demand forecast

Real world

Simulation
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" Y Book | % |=,

RL model

Bookings,

-
(r% sg revenue
\rl_

RL training loop

Bid prices z‘
Bid price control 1 _/
Prices Prices "
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Value function approximation with simulation-based RL

RL training loop

controls based and simulate
on current V booking process

Initialize ML Compite Sample requests I

model for V (t, i)

Update V

Options for updating V:

‘ Repeat until convergence '
a) Monte-Carlo (MC) learning

V(t,i) < observed revenue-to-come from state (¢, i) until end of run

b) Temporal difference (TD) learning
V(t,i) « V(t+1,i") + observed revenue during state transition (t,i) to (t + 1,i")

DD S
mE EWN 3@ ©2021 PROS, Inc. All rights reserved. Confidential and Proprietary

I page 12



Monte-Carlo learning converges to a near-optimum

Revenue performance Bid price vectors (t = 60)
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Scenario-based
RM
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Scenario-based RM (discrete case)

180

 Three scenarios with different demand levels
« Each occurs with given probabilities p.

« We don’t know which scenario we are In
20% 60% 20% » Price can only depend on state (¢, i)
 Problem not solvable via DP

« Simple heuristics:
« BP from medium demand scenario
* Weighted average of BP with constant weights
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Remaining capacity contains information about demand scenario

Different state distribution between
scenarios

Prior probability p, for scenario s
Bayes'’ rule for posterior:
p( l | tl S) ) pS

p(i|t)
ldea: Weighted average of BP

p(s|ti)=

n(t,0) = ) pls |60 m(t,)

RL model trained on sample paths
IS iImplicitly weighted correctly!
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Monte-Carlo learning converges far from optimum

Revenue performance
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Bid price vectors (t = 60)
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Simple value function approximation doesn’t work

- Revenue-to-come decreases with Observed revenue-to-come V (t = 60)

higher remaining capacity

* Naive bid price Is negative 160
* Model restrictions push bp to zero " |
 Per scenario behavior Is as expected “ 0 "‘:. |
» Compute bid price first, then average t, ? | "Lﬂ
» Can we update the bid price instead s ” ',_
of the value function? “ "

Remaining capacity i
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TD learning update of bid price

« Bellman equation for value function

V(t,i) = —max d(t, ))(f —n(t, i) = —h(t,n(t, Q)
* Differential equation for bid price and linearize
= h(t,m(t,i — 1)) — h(t, m(t, i)
on Im(t,i—1) —m(t,i)]

~ a , ,
= d, f D) |r(t i —1) —m(t, )]

* TD learning update for bid prices:

n(t,i) <« n(t+ 1,i)+|[bookings in state (¢, ) \-|[(t,i — 1) — m(¢,i)]
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Bid price TD learning achieves ~1% revenue gain

Revenue performance
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Bid price vectors (t = 60)
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Summary
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Summary

» Scenario-based RM is one way to address forecast uncertainty
* The corresponding control problem is not solvable via a DP
« Simulation-based RL works without Poisson assumption
* Naive value learning does not work
* TD learning update for the bid price leads to promising first results
« Potential next step: Network case
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