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A Healthy RMS Forecast Model

Older flights are Once a flight departs, it is
Dtd discarded added to the database
A / \
_Forecast parameters estimated from one
& 0&0\ year of historical data
W @ . .
VR Tty o] BT e \->~\‘2' & \Booking made today _Changes in customer behavior (slowly)
P takes 6+ months influence the historical database
(post-departure data) \Q& to enter the database

_Designed for stability and predictability

tUsers responsible for adapting to shocks /
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Imposing a COVID Lockdown to Prevent Infection

“Healthy” observations “Sick” observations would
Dtd would be discarded pollute the historical data

V'S

i pace C—Iistorical data frozen to prevent infection\
*Forecast Freeze * from “sick” observations

_Forecasts static — up to users to control

RMS Historical Database

(post-departure data) _Users were flying blind — how to respond?

_Needed automated approach that focused

& on adaptivity
» Departure Date K /
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Injecting an Additional Data Source
Use live sales data to automatically adjust volatile forecast components

*Forecast Freeze *

RMS Historical Database
(post-departure data)
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Active Forecast Adjustment (AFA)

Parametric Forecast Model with Active Forecast Adjustment

Frozen festapa(p, dep,dtd, r, c|pol) =
Forecast g
PEIE[EES

fem @) foow Ppow, dep) fspec Pspec, dep) fseas Pseas, dep) fppu Ppsu, Atd) fecm (Pcems clpol)

Dtd

*Forecast Freeze *

RMS Historical Database
(post-departure data)

Forecasts of
demand
to come

. : » Departure Date
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Computation of AFA Modifiers for Volume and Pick-Up Curve

_Goal: Minimize the error between AFA forecast and the bookings in the parallelogram:

*Forecast Freeze *

RMS Historical Database min 2 (AFA_Demand(dep,dtd|pol)—bookings(dep,dtd|pol))?

(post-departure data) depdtd \

Volume PUC
Yara 5 YAFA

and su

_Minimize the forecast error by computing two “AFA modifiers”:
* Volume modifier — Scale demand volume up or down
* Pick-Up Curve (PUC) factor — Move demand closer to or further from departure
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Smoothing and Capping AFA Modifiers

Example of smoothing - Volume modifier

_ AFA Modifiers are smoothed between parallelograms (Generated Data)
 Smoothing helps to filter out the data noise and —Computed Factor  ——Smoothed Factor
capture the underlying trends 1,0
* Adaptive to new terms, versatile enough to 0,9
withstand outliers, yet easy to control 08

* Based on Exponential Smoothing

o
~

Volume Modifier
o
(@)

_AFA Modifiers can also be capped 0,5
0,4

_AFAis only applied if enough data exists within the 0,3
parallelogram to capture demand trends 0.2
0 10 20 30 40 50

Number of iterations/weeks
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AFA Results in Production — Volume Adjustment

System Final Demand for 12 Selected Markets Before and After AFA — Volume Factor

B System Demand Before AFA m System Demand After AFA
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AFA Results in Production — Pick-Up Curve Adjustment

Pick-Up Curve Demand Before and After AFA
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Lessons Learned from a Year of Forecasting in a Pandemic
What Happens When the Live Booking Data is Fully Vaccinated?

ﬁeedback from airlines: AFA reduces user workload and forecasﬁ
adjustments align with expectations

_ AFA represents a change from current practices — needed to work
with airlines to readjust processes and interventions

Unfrozen

_ Keeping airlines in control was still important — validation of Historical Database
adjustments before application, which markets to activate, etc.

_ Next steps: How will AFA evolve during recovery and when the
historical database is unfrozen?
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