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Abstract

Intelligent decision support systems for the real-time management of landing and take-off operations can be very

effective in helping air traffic controllers to limit airport congestion at busy terminal control areas. The key opti-

mization problem to be solved regards the assignment of airport resources to take-off and landing aircraft and the

aircraft sequencing on them. The problem can be formulated as a mixed integer linear program. However, since this

problem is strongly NP-hard, heuristic algorithms are typically adopted in practice to compute good quality solu-

tions in a short computation time. This paper presents a number of algorithmic improvements implemented in the

AGLIBRARY solver (a state-of-the-art optimization solver to deal with complex routing and scheduling problems)

in order to improve the possibility of finding good quality solutions quickly. The proposed framework starts from

a good initial solution for the aircraft scheduling problem with fixed routes (given the resources to be traversed by

each aircraft), computed via a truncated branch-and-bound algorithm. A metaheuristic is then applied to improve

the solution by re-routing some aircraft in the terminal control area. New metaheuristics, based on variable neigh-

bourhood search, tabu search and hybrid schemes, are introduced. Computational experiments are performed on an

Italian terminal control area under various types of disturbances, including multiple aircraft delays and a temporarily

disrupted runway. The metaheuristics achieve solutions of remarkable quality, within a small computation time,

compared with a commercial solver and with the previous versions of AGLIBRARY.
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1 Introduction

1.1 The investigated problem

The ever increasing level of air traffic flows poses a difficult challenge for air traffic controllers, that work to

ensure the safety and efficiency of operational schedules. This is a difficult task, particularly in bottleneck

areas, and the SESAR project and CDM compliance [14, 40] are pushing for the implementation and use

of automated traffic control systems. One typical bottleneck of the entire air traffic system is the Terminal

Control Area (TCA). During operations, aircraft delays are considered to cause a substantial cost from both

airlines and passengers’ points of view. The computation of optimal aircraft landing and take-off schedules

is thus one of the most relevant operational problems. These facts stimulated the interest for effective

intelligent transport system solutions that can show how to better use the existing resources [44].

This paper aims to improve substantially the quality of solutions, in terms of value of the objective func-

tion and computation time, for the Air Traffic Control in a Terminal Control Area (ATC-TCA) problem. The

investigated problem consists of simultaneously determining the routing (i.e. the resources to be traversed),

sequencing (i.e. the orders between aircraft in each resource) and timing of landing and take-off aircraft

on the TCA resources, which may include several runways and air segments. While there is no generally

recognized objective function in the literature [39], this paper considers a relevant objective function that

aims to minimize the maximum positive deviation from the target landing and take-off times.

The resolution of air traffic control problems requires to consider several factors related to safety, efficiency

and equity. In this work, safety requires the careful modelling of practical TCA constraints, efficiency consists

of reducing aircraft delays with global conflict detection and resolution approaches, equity is achieved by

minimizing the largest delay due to the resolution of conflicts. These factors require to consider the routing,

sequencing and timing of all aircraft moving in the network during the studied traffic horizon. Further

relevant safety, efficiency, equity, and even environmental impacts are addressed, e.g., in [41, 42, 43].

1.2 The related literature

In the aircraft scheduling literature, it is often mentioned a big gap existing between the level of sophis-

tication of published results and algorithms, and the simple methods that are employed in practice. One

motivation reported for this gap is that the theory typically addresses very simplified problems for which

(near-)optimal performance can be achieved, while the practice must face all the complexity of real-time

operations. However, poorly performing aircraft scheduling and routing methods that are used in practice

directly impact the quality of service offered to the passengers, the effect being more evident as traffic density

gets close to saturation. In fact, any small disturbance related to few aircraft may propagate to the other

aircraft, altering the regularity of air traffic even some hours after the end of the original disturbance.

There is a recent trend of research to incorporate more practical objectives and constraints in the detailed

(microscopic) models that have not been adequately captured in published models, since too simplified

(macroscopic) models may have a limited impact on the practice of air traffic control. In view of the

extensive reviews reported in [3, 5, 7, 24, 25, 31], we limit our review of the recent related literature to

two streams of research: (i) the development of microscopic models for the management of aircraft flows in
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terminal control areas, (ii) the development of algorithmic methods for solving the models of stream (i).

Regarding stream (i), there are a few microscopic models that incorporate the detailed characteristics

of the airport infrastructure and of the individual flight paths. Such a level of detail is required to safely

detect and solve potential conflicts at the level of runways, ground and air segments of the TCA. The most

detailed model used in this context is the job shop scheduling model in which each operation denotes the

traversal of an air/ground segment, runway (resource) by an aircraft (job). The variables are the start time

of each operation to be performed by an aircraft on a specific resource. A no-wait version of this model has

been firstly proposed in [8] and successively extended in [11, 12, 26, 38] as a blocking and no-wait version. In

the latter approach, air segment resources are treated as no-wait resources with time windows for modelling

minimum/maximum aircraft travel times, while runway resources are treated as blocking resources which

can host at most one aircraft at a time. Objective functions are based on a makespan minimization.

Regarding stream (ii), exact and heuristic algorithms have been proposed for the ATC-TCA problem.

Among the literature on exact algorithms, Psaraftis [33] and Balakrishnan and Chandran [4] propose a

combination of the constrained position shifting approach (originally introduced by Dear [13]) and of the

dynamic programming approach to solve aircraft sequencing and runway scheduling problems, D’Ariano

et al. [11] describe a branch and bound algorithm for the aircraft scheduling problem with fixed routes,

Faye [15] present a dynamic constraint generation algorithm for an aircraft landing problem. However,

exact algorithms can quickly compute near-optimal solutions only for quite small instances or simplified

problems. Consequently, numerous metaheuristics have been recently proposed to search for good quality

solutions in a short computation time, the most used being the following: genetic algorithms [6, 20, 21, 22],

scatter search [32], tabu search [2, 12, 16, 38], ant colony [23, 45], simulated annealing [18, 34], variable

neighbourhood search [1, 34, 35]. Several of the proposed algorithms have also been hybridized in order

to combine interesting properties and to take the best from each of them. Furthermore, some approaches

(e.g., [16, 20, 21, 22, 28, 38, 45]) have been implemented in a rolling horizon (or receding horizon) control

framework in order to solve large instances in a short computation time compatible with real-time applica-

tions, and to deal with the dynamic and uncertain nature of the ATC-TCA problem. All these approaches

have proposed significant improvements compared to the commonly used air traffic control rules, such as

the first-in-first-out rule. In fact, the usual control rules take a few sequencing and routing decisions at

a time in a myopic fashion, ignoring the propagation of delays to other aircraft in the network [21, 29].

The proposed neighbourhood research methods are well focused on the minimization of the propagation of

aircraft delays or other relevant factors. However, the majority of the works focuses on the development

of good neighbourhood search capabilities for aircraft sequencing problems and simplified networks, while

there is still a lack of fast and effective algorithmic contributions on the simultaneous aircraft scheduling and

routing problem on the TCA resources. The latter problem is the main subject of this paper.

In view of the above discussion of the recent literature regarding the management of landing and take-off

operations, there is a clear need to incorporate an increasing level of detail and realism in the models while

keeping the computation time and quality of the algorithms at an acceptable level. Furthermore, the ATC-

TCA problem is well known to be NP-hard, requiring the implementation of advanced heuristics, especially

when solving complex instances with multiple delayed aircraft and severe resource capacity deficiencies.
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This paper deals with the real-world instances of Samà et al. [38], with up to more than 200,000 scheduling

variables and more than 400 routing variables. Since it is not possible to solve these instances with an exact

method in a reasonable amount of time, we focus on the development of hybrid metaheuristics (based on

tabu search and variable neighbourhood search schemes) to derive good quality solutions in a short time.

1.3 The paper contribution

A recent stream of research on detailed ATC-TCA problem formulations focuses on the Alternative Graph

(AG) of Mascis and Pacciarelli [26]. The alternative graph has been first successfully applied to manage

other transportation and production problems [9, 10, 30]. In this paper, the ATC-TCA problem is modelled

as a generalized job shop scheduling problem via alternative graphs, enriching the model of [8] by addressing

the real-world constraints and the objective function proposed in [11, 12, 37, 38]. This graph allows a more

accurate modelling of relevant TCA aspects and safety constraints, such as holding circles, waiting in flight

before landing, travelling in feasible time windows, hosting multiple aircraft simultaneously in air segments

and individual aircraft in runways. Specifically, the alternative graph can model any 4-dimensional route for

the aircraft in the TCA, while most of the related work done assumes 3-D routes are fixed and only optimizes

the timing of runway operations. In order to include the routing flexibility in the AG model, we use the

Mixed Integer Linear Programming (MILP) formulation of [38]. The MILP formulation can be efficiently

solved by the rolling horizon framework of [37]. However, the latter approach requires a large computation

time when dealing with complex ATC-TCA instances.

This paper presents a number of algorithmic improvements implemented in the AGLIBRARY solver, a set

of optimization models and algorithms for complex routing and scheduling problems developed at Roma Tre

University. The solver is based on the following framework: a good initial solution for the scheduling problem

with fixed routes is computed by the (truncated) branch-and-bound algorithm of [11]. Metaheuristics are

then applied to improve the solution by re-routing some aircraft. This action corresponds to the concept

of a move, from a metaheuristics perspective. In [12], a tabu search algorithm has been applied to solve

practical-size instances for small disturbances. Previous research left open the following two relevant issues.

The first issue concerns the extent at which different solution methods might outperform the tabu search

algorithm and the rolling horizon framework. A second issue is to study algorithmic improvements, in order

to reduce the time to compute good quality solutions. Both these issues motivate the development of the

new metaheuristics proposed in this paper. The paper contributions are next outlined:

• We present new routing neighbourhoods that differ from each other in terms of the aircraft that are

re-routed in each move and for the set of candidate aircraft routes;

• We alternate the search for promising moves in neighbourhoods of different size, similarly to [27], adopt

fast re-scheduling heuristics for the neighbour evaluation, and present strategies for searching within

these neighbourhoods based on variable neighbourhood search, tabu search and hybrid schemes;

• We apply the proposed algorithms to the management of complex disturbed situations, including

multiple delayed landing and/or take-off aircraft and a temporarily disrupted runway. The situations

tested are the most complex instances in [38]. The new metaheuristics are compared with the other
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existing methods based on the AG model, and with solutions computed with a commercial MILP solver.

Significantly better results are obtained in terms of an improved solution quality and/or a reduced

computation time with respect to both the MILP solver and the previous versions of AGLIBRARY.

Section 2 formally describes the ATC-TCA problem and the MILP formulation. Section 3 presents the

metaheuristic algorithms proposed in this paper. Section 4 reports the performance of the algorithms on the

Milan Malpensa terminal control area (MXP) instances of Samà et al. [38]. Section 5 summarizes the paper

results and outlines future research directions.

2 Problem definition and formulation

In this section, a description of the ATC-TCA problem is provided to the reader, together with the formal-

ization of the alternative graph used to model the problem when a pre-defined route is fixed for each aircraft

and an MILP formulation describing its extension when the routing alternatives are also considered.

2.1 The ATC-TCA problem

Landing aircraft move in the landing air segments of the TCA, following a standard descent profile, from

an air entry point to a common glide path, that is the final landing air segment before the runway. Take-off

aircraft move in the ground resources until they get access to the runway and finally fly toward their assigned

exit point via take-off air segments.

A minimum longitudinal and diagonal safety separation distance between every pair of consecutive aircraft

must be always respected, depending on their type, altitude and relative positions. This minimum distance

can be translated into a minimum separation time that is sequence-dependent, since it depends on the aircraft

sequencing of the common resources by considering the different aircraft categories, the required wake vortex

separation based upon wake turbulence categories and the temporal spacing separation standards.

Each aircraft has a processing time on each TCA resource, according to its landing/take-off profile. On

the air segments, the processing time varies between minimum and maximum feasible values.

Each landing/take-off aircraft has a minimum entrance time into the TCA, release time, according to

its current position and speed. Landing aircraft can also be constrained to have a maximum entrance time,

deadline time, into the TCA, e.g., due to limited fuel availability.

All aircraft have scheduled times, due date times, to start processing some TCA resources. A departing

aircraft is supposed to take off within its assigned time window and is late whenever it is not able to

accomplish the departing procedure within its assigned time window. Following the procedure commonly

adopted by air traffic controllers, we consider a time window for take-off between 5 minutes before and 10

minutes after the Scheduled Take-off Time (STT). A departing aircraft is considered delayed in exiting the

TCA if leaving the runway after 10 minutes from its STT. Arriving aircraft are late if landing after their

Scheduled Landing Time (SLT).

Before entering the TCA, landing aircraft can fly in holding circles that are air segments dedicated to

accumulating aircraft delays during the flight. In each holding circle, landing aircraft must fly at a fixed
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speed for a number of half circles, as prescribed by the air traffic controller. Departing aircraft instead can

be delayed in entering the TCA at ground level, i.e. before entering the runway.

We use the following notation for aircraft delays. Entrance delay (exit delay) is the delay of an aircraft on

the entrance to (the exit from) the TCA. The exit value is partly a consequence of a possible late entrance,

which causes an unavoidable delay, and partly due to additional delays caused by the resolution of potential

aircraft conflicts in the TCA, which is the consecutive delay. In this paper, we minimize the maximum

consecutive delay that is an equitable approach for the minimization of aircraft delay propagation. The

problem variables are the timing, ordering and routing of each aircraft in the TCA resources.

The next section will show a model of ATC-TCA problem in which a route is assigned to each aircraft.

This assumption will then be relaxed in order to deliver a general optimization model.

2.2 The AG model

This subsection presents the alternative graph for the ATC-TCA problem with pre-defined routes. This

particular graph is a triple G(N,F,A): N = {s, 1, ..., n, t} is the set of nodes, where nodes are associated to

the following events: s and t represent the start and the end of the schedule, while the other n nodes are

related to the start of the n ATC-TCA operations; F is the set of fixed directed arcs that model the sequence

of operations regarding the pre-defined route of each aircraft; A is the set of alternative pairs that model

the aircraft sequencing and holding circle decisions. Each pair is composed of two alternative directed arcs.

Each node, except s and t, is associated with an operation labelled with the triple krj, where k indicates

the aircraft, r the route chosen and j the resource it traverses. The start time hkrj of operation krj is the

entrance time of aircraft k in resource j when using route r. Each fixed directed arc (krp, krj) ∈ F connects

the two nodes (operations) krp and krj, and has associated the arc weight wFkrp krj . With our notation,

wFkrp krj represents a minimum time constraint between hkrp and hkrj (i.e. hkrj − hkrp ≥ wFkrp krj). If krj

follows krp on the route r of aircraft k, the fixed arc (krp, krj) [(krj, krp)] has a weight wFkrp krj [wFkrj krp]

equal to the minimum [− maximum] time required by aircraft k to process resource r. In this way, the

air segment, runway, and holding circle constraints can be modelled. A fixed direct arc (s, krp), (krp, s) or

(krp, t) models a release, deadline or due date constraint regarding operation krp. A detailed description of

the various sets of fixed directed arcs is provided, e.g., in [11, 38].

Each alternative pair ((kro, uim), (uig, krl)) ∈ A models an aircraft holding circle (when aircraft k =

aircraft u and route r = route i) or sequencing (when aircraft k 6= aircraft u) decision. The two arcs of

the pair have associated the weights wAkro uim and wAuig krl. In any solution, only one arc of each pair in

the set A can be selected. If alternative arc (kro, uim) [(uig, krl)] is selected in a solution, the constraint

huim − hkro ≥ wAkro uim [hkrl − huig ≥ wAuig krl] has to be satisfied. The set A is composed of the subsets:

AHC for holding circle decisions, AAS and ARW for sequencing decisions at air segments and runways. For

taking a decision on the holding circles to be performed by a landing aircraft, an alternative arc is selected

in AHC . For taking an entrance/exit sequencing decision between two aircraft on a shared air segment, an

alternative arc is selected in AAS . For taking a sequencing decision between two aircraft on a shared runway,

an alternative arc is selected in ARW . With our notation, the weight of an alternative arc in AHC represents

a timing in the holding circle, while the weight of an alternative arc in AAS or ARW represents a minimum
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separation time between two ordered aircraft on a shared air segment or runway. A detailed description of

AHC , AAS and ARW can be found in [38].

A selection S is a set of alternative arcs obtained by selecting exactly one arc from each alternative pair in

A and such that the resulting graph G(F, S) : (N,F ∪S) does not contain positive-weight cycles. A selection

S is a solution for the ATC-TCA problem with pre-defined routes. Orders and times for all operations are

easily identified given a selection S. The minimization of the maximum consecutive delay is measured as a

makespan minimization. Given a selection S and any two nodes krp and uml, we let lS(krp, uml) be the

weight of the longest path from krp to uml in G(F, S). By definition, the start time hkrp of krp ∈ N is the

quantity lS(s, krp), which implies hs = 0 and ht = lS(s, t).

2.3 The MILP formulation

The ATC-TCA problem with flexible routes is formulated as a particular disjunctive program [38]. This is

achieved via an MILP formulation in which the scheduling and routing decisions are considered simultane-

ously. The starting point is the alternative graph model for the ATC-TCA problem with pre-defined routes.

The graph is formulated via a big-M formulation enlarging the sets F and A in order to include the fixed

and alternative arcs related to all possible aircraft routes. The advantage of this big-M formulation is the

exact correspondence between arcs and constraints: each fixed directed arc translates into a fixed constraint,

while each alternative pair into a pair of alternative constraints. However, we observe that computing the

optimal solution of big-M formulations can be a time-consuming task for any solver.

We next give a compact big-M formulation, while a detailed formulation is given in Samà et al. [38]. For

each operation krp there is a non-negative real variable hkrp modelling its start time. Regarding operations s

and t, hs is the given start time of traffic prediction (this can be set equal to 0), while ht is a non-negative real

variable indicating the value of the objective function. For each alternative pair ((krp, dij), (uml, vnw)) ∈ A
there is a binary variable xuml,vnwkrp,dij modelling the sequencing/holding decision. For each aircraft k and each

route r, there is a binary variable ykr modelling the route selection. We observe that the number of binary

variables increases quadratically with the number of aircraft, while the number of air segments and routing

alternatives for each aircraft is usually quite limited in a terminal control area.

min ht (1)

Rk∑
r=1

ykr = 1 k = 1, ..., Z (2)

hkrj − hkrp +M(1− ykr) ≥ wFkrp krj ∀(krp, krj) ∈ F (3)

hkrp − hkrj +M(1− ykr) ≥ wFkrj krp ∀(krj, krp) ∈ F (4)

hkrp − hs +M(1− ykr) ≥ wFs krp ∀(s, krp) ∈ F (5)

hs − hkrp +M(1− ykr) ≥ wFkrp s ∀(krp, s) ∈ F (6)

ht − hkrj +M(1− ykr) ≥ wFkrj t ∀(krj, t) ∈ F (7)
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huim − hkro +M(2 + xuig krlkro uim − ykr − yui) ≥ wAkro uim
hkrl − huig +M(3− xuig krlkro uim − ykr − yui) ≥ wAuig krl ∀((kro, uim), (uig, krl)) ∈ A \AHC

(8)

hkrj − hkrp +M(1 + xkrj krpkrp krj − ykr) ≥ wAkrp krj
hkrp − hkrj +M(2− xkrj krpkrp krj − ykr) ≥ wAkrj krp ∀((krp, krj), (krj, krp)) ∈ AHC

(9)

hkrp ≥ 0 ∀krp ∈ N (10)

xuig krlkro uim ∈ {0, 1} ∀((kro, uim), (uig, krl)) ∈ A \AHC (11)

xkrj krpkrp krj ∈ {0, 1} ∀((krp, krj), (krj, krp)) ∈ AHC (12)

ykr ∈ {0, 1} k = 1, ..., Z ; r = 1, ..., Rk (13)

The objective function is reported in Equation (1). We next describe the ATC-TCA problem constraints.

Constraints (2) model the routing decision for each aircraft k among its set of Rk routes. The route r is

chosen for aircraft k if and only if ykr = 1. In total, there are Z aircraft.

Constraints (3) and (4) model the fixed directed arcs (krp, krj) and (krj, krp) ∈ F , that represent

respectively the minimum and − maximum processing times related to operation krp. An arc (krp, krj) is

active (i.e. enforces hkrj − hkrp ≥ wFkrp krj) when the route r is chosen for aircraft k (i.e. ykr = 1).

Constraints (5), (6) and (7) model the fixed directed arcs (s, krp), (krp, s) and (krp, t) ∈ F , that represent

respectively the release, deadline and due date constraints related to operation krp.

Constraints (8) model the alternative pairs ((kro, uim), (uig, krl)) ∈ A \AHC . Each of these alternative

pairs model the two possible sequencing decisions between a pair of aircraft at a shared air segment (if the

alternative pair belongs to AAS) or at a shared runway (if the alternative pair belongs to ARW ). Indeed, the

arcs of each alternative pair in A \ AHC connect two operations of different jobs (aircraft). An alternative

pair ((kro, uim), (uig, krl)) ∈ A\AHC is active in this MILP formulation when both the following conditions

hold: (i) the route r is chosen for aircraft k (i.e. ykr = 1) and (ii) the route i is chosen for aircraft u (i.e.

yui = 1). When an alternative pair ((kro, uim), (uig, krl)) ∈ A\AHC is active, only one of its two arcs must

be active in any ATC-TCA solution, enforcing a particular sequencing decision between k and u on a shared

resource: the alternative arc (kro, uim) is active (i.e. enforces huim − hkro ≥ wAkro uim) when xuig krlkro uim = 0,

while the alternative arc (uig, krl) is active (i.e. enforces hkrl − huig ≥ wAuig kro) when xuig krlkro uim = 1.

Constraints (9) model the alternative pairs ((krp, krj), (krj, krp)) ∈ AHC . These alternative pairs model

holding circle decisions regarding a particular aircraft. Differently than in the previous case, this implies that

the arcs of each pair connect two operations of the same job. An alternative pair ((krp, krj), (krj, krp)) ∈
AHC is active when the route r is chosen for aircraft k (i.e. ykr = 1). When an alternative pair in AHC is

active, only one of its two arcs must be active in any ATC-TCA solution. The activation of one arc for each

alternative pair is modeled as for Constraints (8). Selecting which alternative arc is active in each alternative

pair in AHC corresponds to fixing the number of holding circles to be performed by each landing aircraft.

Constraints (10) set the timing variables h as non-negative real variables, while Constraints (11), (12)

and (13) set the sequencing variables x and the routing variables y as binary variables.
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3 Scheduling and re-routing algorithms

This section describes the algorithmic approaches proposed in this paper to compute effective solutions for

the ATC-TCA problem in a short computation time. Section 3.1 presents the general framework of the solver,

that is based on a combination of aircraft scheduling and re-routing algorithms. Section 3.2 illustrates the

aircraft routing neighbourhoods, which are a main component of the proposed heuristic search procedures.

Section 3.3 details the scheduling heuristic procedure used to evaluate the neighbours (the new routing

combinations). The routing neighbourhoods and the scheduling algorithms are used in Sections 3.4, 3.5, 3.6

that describe the metaheuristic algorithms developed and tested in this paper.

3.1 Solution framework

Figure 1 illustrates the general scheme of the solver. Since the ATC-TCA problem is an NP-hard problem,

we adopt a temporal decomposition and a decomposition in routing and scheduling variables. The former

is solved via the rolling horizon procedure in [37], while the latter is solved via the scheduling and re-

routing algorithms of the AGLIBRARY solver. Specifically, we use the scheduling algorithms in [11], the

re-routing algorithms in [12], the new scheduling and re-routing algorithms developed in this paper. The

two decomposition frameworks can be further combined together.

Execute a            

scheduling 

algorithm

Stopping 

criteria 

reached?

Execute a re-routing algorithm: 

1. Build the current neighbourhood

2. Evaluate the neighbours

3. Choose a neighbour

4. Iterate the search

AGLIBRARY SOLVER

NO

YESInstance New schedule

New

set of

routes

Return

the best 

solution

found
(if any)

Set the current

time horizon

of air traffic

prediction

ROLLING HORIZON

SCHEDULING

RE-ROUTING

Figure 1: A general scheme of the solver

The rolling horizon decomposition framework divides the ATC-TCA problem into time horizons of traffic

predictions. Each time horizon is a sub-problem instance to be solved by the AGLIBRARY solver. We

assume that all aircraft information is known at the start time t0 of the traffic prediction. This rolling

horizon framework corresponds to a centralized framework when the overall problem is solved with a single

time horizon (i.e. when no temporal decomposition is performed).
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The decomposition framework into routing and scheduling works instead as follows. The AGLIBRARY

solver iterates between the computation of a new aircraft schedule for a set of routes, and the selection of

a new set of routes. The basic idea is to first compute an aircraft scheduling solution given fixed (default)

routes, and then search for better aircraft routes. The latter procedure is based on a local search for routing

alternatives starting from the scheduling solution, and an iterative scheduling and re-routing technique to

continue the search. The iterative procedure returns the best aircraft schedule and the best set of routes

after a stopping criteria is reached. In this paper, the maximum computation time is a stopping criteria.

The overall framework returns a feasible aircraft schedule in which a route is fixed for each aircraft and

all potential routing conflicts are solved. In case no feasible schedule is computed, the solver reports the

conflicting routes via a detailed time-space diagram. Based on the information provided by the solver, the

en-route/ground human traffic controllers could take suitable re-scheduling actions on the potential conflicts

that are not allowed by the automated decision support system, including re-routing some aircraft to other

resources in the same or other airports.

3.2 Routing neighbourhoods

This subsection describes the neighbourhood structures used in this paper. To this aim, we need to introduce

the following notation. Let S(F ) be a ATC-TCA solution with the routes defined in F and the sequencing

decisions defined in S, and let G(F, S) be the graph of this solution. The search for a better solution is based

on the computation of a new graph G′(F ′, S′). This graph differs from the former G(F, S) by a different

route for some aircraft, and different orders and times of operations. This corresponds to a neighbour, in

metaheuristics terms. The longest path in G′(F ′, S′) is denoted as lS
′(F ′)(s, t). Our intuition is to shorten

the weight of the longest path in G(F, S), i.e. the critical path, by re-routing some aircraft. We observe that

F ′ improves over F in terms of the objective function value if lS
′(F ′)(s, t) < lS(F )(s, t).

The routing neighbourhoods studied in this paper are based on observations on the graph G(F, S) re-

garding the nodes that represent operations involved in the resolution of potential aircraft conflicts. To

this aim, we need to introduce the following concepts. A critical node is a node on the longest path from

the start node s to the end node t in G(F, S), that is called the critical path set C(F, S). A waiting node

is a critical node in C(F, S) representing an aircraft k traversing a shared resource with a consecutive

delay caused by the resolution of a conflicting request between aircraft k and another aircraft u, while

a hindering node is another critical node in C(F, S) related to aircraft u scheduled before aircraft k on

the shared resource. Formally, for given a solution S(F ), krp ∈ N(F ) \ {s, t} is a critical node of air-

craft k with route r if lS(F )(s, krp) + lS(F )(krp, t) = lS(F )(s, t). A critical node krp is a waiting node if

lS(F )(s, krp) > lS(F )(s, ν(krp)) + wFν(krp),krp, where the node ν(krp) precedes the node krp on route r. For

each waiting node krp, there is at least one hindering node η(krp) in G(F, S), different from node ν(krp),

such that lS(F )(s, krp) = lS(F )(s, η(krp)) + wFη(krp),krp.

We investigate strategies for the selection of alternative routes for some aircraft based on the identification

of backward and forward ramifications of the critical path in G(F, S). Intuitively, a backward (forward)

ramification is an extension of the critical path that incorporates all the nodes proceeding (following) the

critical nodes. Formally, for a given node krp ∈ N(F )\{s, t}, we recursively define the backward ramification
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RB(krp) as follows. If krp is a waiting node, then RB(krp) = RB(ν(krp)) ∪ RB(η(krp) ∪ {krp}, otherwise

RB(krp) = RB(ν(krp))∪{krp}. Similarly, we recursively define the forward ramification RF (krp) as follows.

If krp is the hindering node of a waiting node dij, then RF (krp) = RF (σ(krp)) ∪ RF (dij) ∪ {krp}, where

node σ(krp) follows node krp on route r. Otherwise, RF (krp) = RF (σ(krp))∪{krp}. By definition, RB(s) =

RF (s) = {s} and RB(t) = RF (t) = {t}. Given C(F, S), we define a ramified critical path set as F(F, S) =⋃
krp∈C(F,S)[RB(krp)∪RF (krp)], and a backward ramified critical path set as B(F, S) =

⋃
krp∈C(F,S)[RB(krp)].

We study the five neighbourhood structures listed below.

• Complete K-Route neighbourhood NCKR: contains all the feasible solutions to the ATC-TCA problem

in which K aircraft follows a different route compared to the incumbent solution. To limit the number

of neighbours to be evaluated, NCKR is only partially explored as follows. A move is obtained by

choosing K routes different from the ones of the current solution at random (i.e. all alternative routes

having the same probability), until a number ψ (parameter) of alternative routing solutions is obtained:

• Ramified Critical Path Operations neighbourhood NRCPO considers only the routing alternatives for

the aircraft associated to the nodes in B(F, S) plus F(F, S). The idea is that the maximum consecutive

delay of an optimal solution to the ATC-TCA problem can be reduced by removing aircraft conflicts

causing it. This requires either removing, anticipating or postponing some operations from the critical

path set (i.e. re-routing the aircraft associated to the critical path on the graph G(F, S) of the incumbent

solution). The latter result can be obtained by re-routing some aircraft represented by jobs with nodes

in B(F, S) or F(F, S) and then re-scheduling aircraft movements;

• Waiting Operations Critical Path neighbourhood NWOCP is a restriction of NRCPO that considers the

routing alternatives for the aircraft associated to the waiting nodes in C(F, S);

• Delayed Jobs neighbourhood NDJ considers only the aircraft (jobs) that have a consecutive delay on

some due date arcs in the graph G(F, S) of the incumbent solution;

• Free-Net Waiting Operations Jobs neighbourhood NFNWJ considers only the aircraft (jobs) that have

some waiting nodes in the alternative graph G(N,F,A) of the incumbent solution. A waiting node is

identified by computing the consecutive delay that would be associated in G(N,F,A) by selecting an

alternative arc (i.e. the one generating the waiting node) and by disregarding all the other arcs in A.

3.3 Heuristic evaluation of routing neighbours

The choice of a best neighbour in the neighbourhood requires the computation of a new ATC-TCA solution

S′(F ′) starting for an incumbent solution S(F ), that is characterized by the routing decisions in F ′ and the

sequencing decisions in S′. To this aim, we use fast heuristics based on a two-step graph building procedure

in which the graph G(F, S) is translated into the graph G′(F ′, S′). In the first step, a sub-graph of G′(F ′, S′)

is generated by considering all the nodes in N(F I) associated to the routes modelled by the arcs in F I = F⋂
F ′, all the fixed directed arcs in F I and all the alternative arcs in S(F ) incident in a node in N(F I).

This corresponds to keeping a subset of decisions from the incumbent solution into the neighbour solution.
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In the second step, the fixed directed arcs in FR = F ′ \ F I and the nodes in N(FR) are added to the sub-

graph. Finally, G′(F ′, S′) is obtained by adding a selection of alternative arcs S′(FR) to the sub-graph. The

selection S′(FR) is computed by taking the best solution among those computed via two greedy algorithms

(i.e. the AMSP and AMCC algorithms) described in D’Ariano et al. [11].

3.4 Tabu search re-routing algorithm

The Tabu Search (TS) is a deterministic metaheuristic based on local search, which makes extensive use of

memory for guiding the search [17]. A basic ingredient is the tabu list, that is used to avoid being trapped in

local optima and revisiting the same solution. From the incumbent solution, non-tabu moves define a set of

solutions, named the incumbent solution neighbourhood. At each step, the best solution in this set is chosen

as the new incumbent solution. Some attributes of the former incumbent are then stored in the tabu list.

The moves in the tabu list are forbidden as long as these are in the list, unless an aspiration criterion is

satisfied. The tabu list length can remain constant or be dynamically modified during the search.

The Tabu Search (TS) of D’Ariano et al. [12] is used in the iterative scheduling and re-routing framework.

The neighbourhood strategy used by TS explores candidate solutions in NRCPO unless this neighbourhood

is empty. In the latter case, ψ (parameter) consecutive moves are performed in NCKR with K = 1 before

searching again in NRCPO. All neighbours are evaluated via the scheduling heuristics of Section 3.3. The

best neighbour is set as the move to be made, and evaluated via the branch-and-bound algorithm of [11]; the

resulting best solution is set as the new incumbent solution. The inverse of the chosen move is stored in a

tabu list of length λ (parameter). The moves in the tabu list are forbidden for λ iterations and no aspiration

criteria is used. When no potentially better solution is found on the incumbent solution neighbourhood, the

search alternates the above neighbourhood strategy with a diversification strategy, which consists of changing

at random the route of µ (parameter) aircraft at the same time. From the tuning performed in [12], the best

overall exploration strategy has the following parameter values ψ = 10, λ = 32 and µ = 5.

3.5 Variable neighbourhood search re-routing algorithm

A Variable Neighbourhood Search (VNS) is proposed to efficiently solve the ATC-TCA problem. This meta-

heuristic is based on the combination of different neighbourhoods. Neighbourhood changes are proposed

both in a local search phase in order to compute a local minimum, and in a perturbation phase in order to

escape from a local minimum [19]. The intuition behind the choice of this search method for solving the

ATC-TCA problem is as follows. The metaheuristic search starts from a reference ATC-TCA solution with

fixed routes and needs to explore various possibilities to generate new solutions in the local search phase.

Multiple aircraft are simultaneously re-routed and new aircraft scheduling solutions are computed in order

to evaluate a different load of the TCA resources and to investigate the sequence flexibility when solving

the potential aircraft conflicts. The choice of re-routing multiple simultaneous aircraft differs from the local

search used in TS, in which a new solution is generated by changing the route of a single aircraft and by

considering the aircraft on the ramified critical path only. The proposed VNS makes use of neighbourhoods

based on different candidate aircraft and routing alternatives in the runway and/or air segment resources.
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The VNS algorithm of Figure 2 is an adaptation of the basic VNS described in Hansen et al. [19]. This

algorithm combines the classic ingredients of the VNS algorithm with the routing neighbourhood structures

of Section 3.2 and new sophisticated neighbourhood search strategies to search for better aircraft routes.

The general structure of the VNS is the following. The algorithm starts from an incumbent solution

of the ATC-TCA problem, named IncSol G(F, S), computed via the branch-and-bound algorithm of [11]

given a default (off-line) route to each aircraft. A counter K is adopted to fix the number of aircraft that

are re-routed in each move. The initial value of K is set to 1, i.e. a single aircraft is re-routed in IncSol

G(F, S). The metaheuristic iterates the search for better solutions starting from IncSol until a maximum

computation time Tmax is reached or until the maximum consecutive delay is larger than 0. At each iteration,

a neighbourhood of IncSol is generated and a new solution IncSol′ is selected via a shaking procedure (see

below). The search continues with the generation of a neighbourhood of IncSol′ and a local search based on

best-improvement is performed in a restricted neighbourhood. Then, a Move Or Not function is performed

as follows. In case an improving move IncSol′′ is obtained via the local search (i.e. f(IncSol′′) < f(IncSol)),

a new iteration is performed by setting IncSol′′ as the new incumbent solution and K is set to 1. Otherwise,

the parameter K is set to K + 1 and a new iteration is performed until K ≤ Kmax. When K = Kmax the

algorithm diversifies the search with a change of neighbourhood structure (if the algorithm works with a

single neighbourhood structure this step is not performed). The metaheuristic returns the best ATC-TCA

solution (IncSol) and the objective function value (f(IncSol)). The pseudo-code of the VNS is reported in

Figure 2. We next describe the specific features of the VNS.

Build Neighbourhood. Starting from an incumbent solution, the NCKR neighbourhood is generated,

in which exactly K aircraft are re-routed in the graph G(F, S) of the incumbent solution.

Shake. This is a typical diversification procedure that consists here in changing the route of K air-

craft randomly in the NCKR neighbourhood of the incumbent solution (IncSol), and in computing a new

incumbent solution (IncSol′) via the scheduling heuristics of Section 3.3 and the new set of routes.

Neighbourhood Search Strategy. This procedure is proposed in order to reduce the local search to

the evaluation of up to L neighbours in the current neighbourhood. Starting from an incumbent solution

and the NCKR neighbourhood of this solution, a restricted neighbourhood is generated by using a given

neighbourhood structure Ni. The selection of L neighbours is achieved in the following steps:

1. aircraft ranking : Each aircraft gets a score based on the criterion specified in a neighbourhood structure

N . The score is used to decide how many times the aircraft has to be re-routed in the L neighbours;

This ranking is based on one of the neighbourhood structures of Section 3.2. In NRCPO, each aircraft

gets a score based on the maximum value lS(F )(s, krp) + lS(F )(krp, t) ∀ (krp) in the ramified critical

path of the graph G(F, S) of the incumbent solution. In NWOCP , each aircraft gets a score based

on the sum of the consecutive delays associated at each critical node in the graph G(F, S). In NDJ ,

each aircraft gets a score based on the maximum consecutive delay associated at its due date arcs of

the graph G(F, S). In NFNWJ , each aircraft gets a score based on the sum of the consecutive delays

associated at a restricted set of waiting nodes in the graph G(N,F,A) of the incumbent solution. We

only consider the alternative pairs in which both the alternative arcs generate a consecutive delay.

For those alternative pairs, we take the alternative arc generating the largest consecutive delay in
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G(N,F,A) and the corresponding waiting node.

2. route ranking : The routes of each aircraft get a score based on the distance from the route of the

incumbent solution. The larger is the difference between the routes, the higher is the score. The route

ranking thus suggests for each aircraft to select the most different routes. Among the selected routes,

the ranking gives precedence to the routing alternatives in which there is a change of runway, since

this is often the conflicting resource of the TCA aircraft routes;

3. neighbour generation : This is the assignment of the routes to the aircraft in each neighbour. This

is done by selecting the aircraft based on the aircraft ranking and by selecting the routes based on

the route ranking. A combinatorial combination of the routes is used in order to generate L different

neighbours. In each neighbour, exactly K aircraft are re-routed compared to the incumbent solution.

The neighbours are ordered based on the aircraft ranking, and in case of tie on the route ranking.

Algorithm VNS

Input: IncSol G(F, S), Kmax, Tmax, L, N1, N2

Ni ← N1,

While (T < Tmax) & (f(IncSol) > 0) do

Begin

K ← 1,

While (K ≤ Kmax) do

Begin

BuildNeighbourhood(IncSol, K),

IncSol′ ← Shake(IncSol, K),

BuildNeighbourhood(IncSol′, K),

NeighbourhoodSearchStrategy(IncSol′, K, L, Ni),

IncSol′′ ← FirstImprovement(IncSol′),

(IncSol, K) ← MoveOrNot(IncSol, IncSol′′, K),

If (K = Kmax) do

Begin

Ni ← NeighbourhoodChange(IncSol, Ni, N1, N2),

End

T ← CPU time()

End

End

Figure 2: Sketch of the VNS algorithm

Figure 3 presents a numerical example of the neighbourhood search strategy, in which four aircraft

(J = {J1, J2, J3, J4}) can be re-routed in a TCA. J1 and J4 have four alternative routes (e.g., the routes

of J1 are: J1-1, J1-2, J1-3, J1-4), while J2 and J3 have two alternative routes each. In the incumbent

solution, all aircraft use the first route (J1-1, J2-1, J3-1, J4-1). The parameters of the procedure are set to
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the following values: L = 4 and K = 2 (i.e. the neighbourhood is restricted to 4 neighbours and 2 aircraft

are re-routed in each neighbour).

J1 0 0 0 0 

J2 15 8 5 4 

J3 64 32 21 16 

J4 40 20 13 10 J1 0 

J2 1 

J3 4 

J4 3 J3-2 J4-2 

J3-2 J4-3 

J3-2 J2-2 

J3-2 J4-4 

Aircraft Ranking 

   Neighbor Generation 

Figure 3: Example of neighbourhood search strategy with |J | = 4, L = 4 and K = 2

The aircraft ranking determines a score matrix in which each row represents an aircraft and each column

the number of times each aircraft can be re-routed. This score matrix is depicted in the left-hand side

of Figure 3. Specifically, the first column reports the score for each aircraft based on the neighbourhood

structure NDJ (e.g., the value 40 in this example is the maximum consecutive delay associated at aircraft

J4). The other columns report the score of the first column divided by the column number, e.g., 40/2 = 20,

40/3 = 13, 40/4 = 10. By taking the highest KL scores in the score matrix (these values are reported in

bold in Figure 3), we get the number of times each aircraft has to be re-routed in the four neighbours (e.g.,

J4 is re-routed in three neighbours). This is reported in the center table of Figure 3.

The route ranking orders the list of re-routing alternative of each aircraft based on maximizing the

difference with the incumbent route and giving precedence to the routing alternatives in which there is a

change of runway. In this case, the route ranking of J4 is J4-2, J4-3, J4-4 and the most different route with

a change of runway is J4-2.

The neighbour generation procedure assigns the routes to the aircraft in each neighbour. In this example,

J4 appears in the neighbours with its three different routes, while J2 and J3 have only a route to be chosen.

Every row of the table in the right-hand side of Figure 3 corresponds to a candidate move.

First Improvement. This is a local search procedure in the restricted neighbourhood in which the

candidate moves are ordered based on the neighbour generation procedure. At each step of the procedure,

the neighbour with the highest ranking in the restricted neighbourhood is considered, a new graph is build

with the new routes of the neighbour, and a new solution is computed via the scheduling heuristics of

Section 3.3 for the new set of routes. This procedure lasts until a better solution is obtained compared to

the incumbent solution, or until all L neighbours in the restricted neighbourhood have been evaluated.

Move Or Not. This procedure is responsible for possibly making a move. In the case where the best

solution found in the neighbourhood is better than the incumbent, the resulting graph is solved by the

branch-and-bound algorithm of [11], and the best solution is set as the new incumbent solution. Otherwise,

the best solution in the neighbourhood is chosen as incumbent, or some diversification strategy is employed.
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Neighbourhood Change. This procedure diversifies the search by alternating K iterations of the

neighbourhood search strategy with N1, and K iterations of the neighbourhood search strategy with N2.

3.6 Hybrid search re-routing algorithm

We introduce a hybrid metaheuristic, named Variable Neighbourhood Tabu Search (VNTS), for solving

the ATC-TCA problem. This algorithm consists of a combination of VNS and TS, as proposed earlier

in other contexts by Moreno Pérez et al. [27]. The hybridization is proposed in order to take promising

ideas from both the metaheuristics. The VNS is used in order to explore different neighbourhoods of the

incumbent solution, so that the reference aircraft scheduling solution can be improved in terms of multiple

routing modifications. The TS is used to avoid cycling and is combined with aircraft re-routing strategies

to escape from local minimum. Specifically, the ingredients of the proposed hybrid metaheuristic are an

intensification strategy based on the exact exploration of a restricted aircraft re-routing neighbourhood, and

various diversification strategies for aircraft re-routing in different runway and air segment resources and on

a restart technique based on a list of potentially useful routing alternatives for each aircraft.

Figure 4 introduces the pseudo-code of the hybrid metaheuristic. Starting from an incumbent solution

IncSol G(F, S), a given neighbourhood structure Ni and a counter Q (initialized as 0), the metaheuristic

iterates the search for better solutions in various neighbourhoods until a maximum computation time Tmax is

reached, as far as the maximum consecutive delay is larger than 0. Each iteration evaluates all the neighbours

in a restricted neighbourhood of IncSol (i.e. L non-tabu neighbours, determined via a neighbourhood search

strategy, analogously to the VNS procedure) and the best neighbour is implemented via the branch-and-

bound algorithm of [11]. The Move Or Not function is performed as for the VNS algorithm of Figure 2.

However, when K = Kmax the algorithm diversifies the search as follows. If Q < Qmax, a change of

neighbourhood structure is implemented, and Q is set to Q + 1; otherwise a restart strategy based on a

problem-specific memory structure is applied and Q is set to 0. Before a new iteration is performed, a tabu

search memory and a time counter are updated. We next describe key VNTS features in more detail.

Best Improvement. Given a restricted neighbourhood of an incumbent solution, this procedure eval-

uates all neighbours via the scheduling heuristics of Section 3.3. The best neighbour is set as the move to

be made, and evaluated via the branch-and-bound algorithm of [11]; the resulting best solution is set as the

new incumbent solution.

Neighbourhood Change. This procedure diversifies the search by alternating K iterations of the

neighbourhood search strategy with N1, with K iterations of the neighbourhood search strategy with N2. In

particular, when Q < Qmax, K = Kmax and the current neighbourhood structure Ni = N1, the procedure

sets Ni = N2 and the search continues with K neighbourhood search strategy iterations with N2.

Restart Strategy. This is a typical diversification strategy that we implement as follows. A restart

memory structure is used to store the number of times each aircraft re-routing has been evaluated in any

neighbour so far. From this structure, we compute an ordered list of routing alternatives for each aircraft

from the less frequently used to the most frequently used. The restart strategy consists of the implementation

of a move (disregarding the tabu memory) in which the less frequently used route is set for each aircraft.

In case of tie, a random decision is taken for each aircraft among its least-used routes. The restart memory
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Algorithm VNTS

Input: IncSol G(F, S), Kmax, Tmax, L, TLmax, Qmax, N1, N2

Q ← 0,

Ni ← N1,

While (T < Tmax) & (f(IncSol) > 0) do

Begin

K ← 1,

While (K ≤ Kmax) do

Begin

BuildNeighbourhood(IncSol, K),

TabuMemoryF ilter(TL),

NeighbourhoodSearchStrategy(IncSol, K, L, Ni),

IncSol′ ← BestImprovement(IncSol),

(IncSol, K) ← MoveOrNot(IncSol, IncSol′, K),

If (K = Kmax) do

Begin

If (Q < Qmax) do

Begin

Ni ← NeighbourhoodChange(IncSol, Ni, N1, N2),

Q ← Q + 1,

End

Else

Begin

RestartStrategy(Q),

Q ← 0,

End

End

TL ← TabuMemoryUpdate(TL, TLmax, Q, Qmax),

T ← CPU time()

End

End

Figure 4: Sketch of the VNTS algorithm

structure is reset each time the restart strategy is used.

Tabu Memory. This technique is used to avoid cycling and revisiting the same solution. This is achieved

by two functions named tabu memory filter and tabu memory update. The former function removes from the

current neighbourhood all the tabu moves (no aspiration criteria is used), while the latter function updates

the list of tabu moves during the search. The tabu list (TL) used in the VNTS is made by up to TLmax

moves. For each move that has been implemented in a local search step, the following key information

is stored: the re-routed aircraft of the move, and the old route chosen for each re-routed aircraft. For
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example, consider an instance with three aircraft and three routes for each aircraft. An incumbent solution

is J1 − 1, J2 − 1, J3 − 1 and the move performed by a local search is J1 − 1, J2 − 2, J2 − 3. The tabu

memory update will store in the tabu list the following information: J2 and J3 have been re-routed and the

tabu-routes are J2− 1 and J3− 1. A move is tabu when the two routes J2− 1 and J3− 1 are chosen as the

new routes of J2 and J3. The tabu list is reset when a restart move is performed (i.e. when Q = Qmax).

4 Computational experiments

This section presents the experimental assessment of the various metaheuristics of Section 3. The test bed

is the Milan Malpensa terminal control area (MXP) and the instances are taken from Samà et al. [38]. In

particular, we evaluate the metaheuristics on the most complex instances with strong disturbances and a

large number of aircraft. The objective of this evaluation is to report the marginal improvement achieved by

the new metaheuristics compared with the approaches in [38]. To this end, the experiments are executed on

the same processor used in [38], that is Intel Core 2 Duo E6550 (2.33 GHz), 2 GB of RAM, Windows XP.

For all the metaheuristics tested in this paper, we adopt the deadline implications and the pre-processing

procedure developed in [38]. For all the approaches based on the rolling horizon framework, we use the same

parameter setting in [38] (i.e. we fix the roll period to 10 min and the look-ahead period to 15 min).

4.1 Description of the TCA
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Air Segments 

Common 

Glide Path 
Runways Holding  
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Figure 5: Malpensa (MXP) Terminal Control Area

Figure 5 shows the TCA scheme of Malpensa (MXP) TCA. There are two runways (RWY 35L, RWY

35R), used both for departing and arriving procedures. The MXP resources are: three airborne holding

circles (resources 1-3 in Figure 5, named TOR [Torino], MBR [Mebur], SRN [Saronno]), eleven air segments

for arriving procedures (resources 4-14), a common glide path (resource 15) and two runways (resources

16-17). The common glide path resource includes two parallel air segments before the runways for which

traffic regulations impose a minimum diagonal/longitudinal distance between landing aircraft. Note that
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only air segment 9 can be traversed in both directions, while all the other air segments can only be traversed

from the entrance of the TCA towards the runways.

4.2 Tested instances

The ATC-TCA instances are based on real data collected for the Milan Malpensa TCA. We consider a

subset of the instances generated in [38], that are obtained by varying the following parameters: (i) the

model variant, (ii) the time horizon of traffic prediction, (iii) the aircraft delays, (iv) the disruption.

Model variant. Three variants are investigated to model objective functions and user requirements.

Model 1 (M1) measures the delay of landing and take-off aircraft at the runways, which are the most used

TCA resources. Model 2 (M2) modifies the objective function for landing aircraft by measuring their delay

both at the runways and at the entrance of the TCA, penalizing a late entrance in the TCA. The latter model

takes into consideration the extra work required to coordinate the solutions of TCA with en-route traffic

controllers. Model 3 (M3) extends M2 with additional deadline constraints that limit the maximum possible

entrance time of each landing aircraft in the TCA. These constraints are inserted in order to consider the

limited possibility of airborne holding, which are more expensive and constrained than ground holding.

Time horizon of traffic prediction. Two time horizons of different length are considered: 60 and

180 minutes. The shorter time horizon can be considered of practical interest for the management of light

disturbances, while the longer time horizon can better assess the traffic control measures in terms of aircraft

delay propagation. The latter time horizon is particularly relevant to study in case of disruptions.

Aircraft delays. Disturbed traffic conditions are generated by delaying the entrance time of some

aircraft in the TCA. The entrance delays are randomly generated according to a uniform distribution, and

are applied at some aircraft entering the TCA during the first half of the time horizon under examination.

For each time horizon of traffic prediction, we consider 10 delay instances in which random delays are up to

5 minutes and other 10 delay instances in which random delays are up to 15 minutes.

Disruption. We consider the case in which one of the two runways of the TCA is unavailable in a time

window, and all landing and take-off aircraft have to be scheduled on the only available runway during the

disruption. The disrupted case is only studied for the 180-minute traffic predictions with a disrupted runway

between the first and the second hour of traffic prediction.

In total, there are three groups of ATC-TCA instances: two groups regard undisrupted operations with

different time horizons (60 and 180 minutes), for a total of 120 delayed instances (i.e. for the three model

variants, the two time horizons, and the 20 aircraft delays); one group of 60 disrupted instances (i.e. the

three model variants, the 180-minute time horizon, and the 20 aircraft delays).

Table 1 gives average information on the aircraft delay instances regarding the MILP formulation; every

row is an average over the 20 delay instances. Moreover, Column 1 reports the time horizon of traffic

prediction, Column 2 the model variant, Column 3 the number of fixed constraints, Column 4 the number of

alternative constraints, Column 5–7 the number of MILP variables, Column 8 the number of aircraft. The

model variants differ in terms of the fixed constraints, since different due date and deadline arcs are used.

Disrupted instances have the same characteristics (concerning the variables in Table 1) as the corresponding

undisrupted instances.
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Table 1: Size of the MILP formulation for the various ATC-TCA instances

Time Model Num of Fixed Num of Alternative MILP Variables Num of

Horizon Variant Constraints Constraints h x y Aircraft

60 M1 728 11526 264 5763 62 40

min M2 751 11526 264 5763 62 40

M3 774 11526 264 5763 62 40

180 M1 4331 456476 871 228238 414 117

min M2 4649 456476 871 228238 414 117

M3 4967 456476 871 228238 414 117

4.3 Assessment of the VNS and VNTS parameters

This section discusses the choice of alternative configurations for the VNS and VNTS algorithms, while the

TS algorithm configurations are evaluated in previous works [12, 38]. The computational assessment is based

on 20 pilot ATC-TCA instances with aircraft delays. Disrupted instances have not been considered since

these present a reduced number of alternative routes. The assessment is based on the evaluation of the

metaheuristics in the centralized framework with Tmax = 180 seconds.

Table 2: Experimental setting of algorithmic parameters

Tmax (sec) BB Time (sec) Kmax L TLmax Qmax

180 4/10/20/30 2/3/4/5 5/10/20 0/8/15/32 2/3/4

N N1 +N2

DJ / RCPO / WOCP / FNWJ WOCP+FNWJ / FNWJ+WOCP / DJ+WOCP / WOCP+DJ

Table 2 shows the parameters considered in the algorithm assessment. The parameters used in both

algorithms are the time given to the Branch-and-Bound algorithm (BB Time, in seconds), the number of

aircraft that are re-routed in the current neighbourhood (Kmax), the size of the restricted neighbourhood

(L), and the choice of the neighbourhood structure (N1 + N2 or N when the two coincide). Additional

parameters of the VNTS are the tabu list length (TLmax) and the counter used for the diversification

strategies (Qmax). The value of each parameter that yielded the best results is reported in bold and used in

all the presented experiments.

4.4 Assessment of the solution quality

This section presents the results obtained for the best metaheuristics developed in this paper and compares

them with the results obtained in Samà et al. [38], that is used as a benchmark comparison for the newly

developed algorithms. Table 3 gives an overview of the best ALGOrithm in [38] (ALGO, Column 4), the

best CEntralized MetaHeuristic (CE MH, Column 5) and the best Rolling Horizon MetaHeuristic (RH MH,

Column 6) for the instances grouped by the time horizon of traffic prediction (Column 1), the type of

disturbance (Column 2), the model variant (Column 3). Each row reports the best algorithm on the set of

20 ATC-TCA instances described in Section 4.2.
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We now recall the different acronyms used: MILP refers to the Mixed-Integer Linear Programming

formulation of the ATC-TCA problem solved by using the IBM ILOG CPLEX MIP 12.0 solver; VNS,

VNTS and TS refer to the metaheuristics Variable Neighbourhood Search, Variable Neighbourhood Tabu

Search and Tabu Search; DJ and WOCP+FNWJ refer to the restricted neighbourhood Delayed Job and

the combined restricted neighbourhoods Waiting Operation Critical Path and Free-Net Waiting Operations.

We next give detailed information on the performance of the various best algorithms reported in Table 3.

Table 3: Best algorithms for various groups of instances

Time Disturbance Model Best Best Best

Horizon Type Variant Algo [38] CE MH RH MH

M1 RH MILP VNTS DJ VNS DJ

60 min Normal M2 CE MILP VNTS DJ VNS DJ

M3 CE MILP VNTS DJ VNS DJ

M1 RH MILP VNTS DJ VNS DJ

180 min Normal M2 RH MILP VNTS DJ VNS DJ

M3 RH MILP VNTS DJ VNS DJ

M1 RH TS VNS WOCP+FNWJ VNS DJ

180 min Disrupted M2 RH TS VNS WOCP+FNWJ VNS DJ

M3 RH TS VNS WOCP+FNWJ VNS DJ

Regarding CE MILP, RH MILP and RH TS, we use the same setting of the parameters and thus the

same results presented in Samà et al. [38]. We recall that their time limit of computation is 240 (720) seconds

for the 60-minute (180-minute) instances.

Regarding the metaheuristics developed in this paper, the parameters are set as described in Section 4.3.

The best metaheuristics have been taken among VNS WOCP+FNWJ, VNS DJ, VNTS WOCP+FNWJ,

VNTS DJ. We recall that the time limit of computation is 180 seconds for the CE MH. The RH MH have

a time limit of 30 seconds (10 seconds) for each roll period of the 60-minute (180-minute) instances, since 6

(18) periods are required to solve the overall time horizon and the maximum computation time is also fixed

to 180 seconds. The BB time limit for the CE MH (RH MH) is 10 seconds (4 seconds).

Table 4 provides the results obtained for the three groups of instances: the 60-minute delayed instances,

the 180-minute delayed instances and the 180-minute disrupted instances. Column 1 presents a three-field

code in order to identify each group of instances, where each code is structured as follows: [model variant]-

[time horizon]-[NOrmal or DISrupted traffic]. Columns 2-3 report the average best objective function value

(in seconds) obtained by all the algorithms tested in [38], and the average computation time (in seconds) at

which that value was found. Columns 4-5 report the average best objective function value found by all the

metaheuristics developed in this paper combined with the centralized and rolling horizon frameworks, and

their average computation time. Columns 6-7 (8-9) (10-11) report the average best objective function value

and the average computation time obtained by using only the best algorithm in [38] (the best CEntralized

MetaHeuristic) (the best Rolling Horizon MetaHeuristic), as indicated respectively in Table 3. The best

average values are reported in bold regarding the best solution and the best algorithm columns. The results
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obtained for individual ATC-TCA instances can be found in [36].

Table 4: Average results for each type of instance

Best Sol [38] Best Sol MH Best Algo [38] Best CE MH Best RH MH

Instance Type Value Time Value Time Value Time Value Time Value Time

(sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec)

M1-60-NO 4.0 7.1 4.0 27.0 4.0 7.1 4.4 19.1 5.7 180

M2-60-NO 7.45 44.9 7.45 34.3 7.5 44.9 7.45 34.3 8.5 180

M3-60-NO 7.45 22.1 7.45 37.7 8.7 10.1 7.45 37.7 8.1 180

M1-180-NO 24.5 330.9 24.5 133.4 31.2 273.7 41.4 89.0 36.5 180

M2-180-NO 39.2 348.2 37.6 147.5 42.9 348.4 43.9 99.6 42.7 180

M3-180-NO 25.1 403.8 37.8 138.2 25.7 388.3 43.9 99.8 44.2 180

M1-180-DIS 749.3 506.8 699.7 107.4 844.6 720 756.2 24.6 858.9 180

M2-180-DIS 688.8 641.9 691.2 100.9 770.8 720 747.1 40.4 842.7 180

M3-180-DIS 795.5 627.5 699.0 92.3 872.2 720 806.4 30.1 907.0 180

For the 60-minute instances of Table 4, the best solution found by the new metaheuristics (Column 4)

is always equal to the best solution found by the algorithms in [38] (Column 2), and all these solutions are

proven optimal. When comparing the algorithms, the best CE MH is the best algorithm in terms of the

average objective function value, even if it often requires a longer computation time that the best algorithm

in [38]. The best RH MH is outperformed by the other best algorithms in terms of computation time, since

the computation time of the rolling horizon framework is fixed to 180 seconds by construction.

For the 180-minute delayed instances of Table 4, the best CE MH and RH MH are significantly faster to

compute their best solution compared to the best algorithm in [38] (i.e. RH MILP). Regarding the solution

quality, the best RH MH is better than the best CE MH. However, the best algorithm in [38] gives the best

average results, in a longer computation time, except for M2.

For the 180-minute disrupted instances of Table 4, the best CE MH outperforms the previously best

known algorithm and the best RH MH in terms of both solution quality and time to compute the best

solution. This strong improvement is due to the ability of VNS and VNTS to perform multiple simultaneous

re-routing actions in the air segments of the TCA for landing aircraft. These re-routing actions are required

in order to allow a better landing and take-off aircraft scheduling on the only available runway. The new

best known solutions are found partly by the best RH MH and partly by the best CE MH, but the latter

algorithm is quicker and has the best average performance in terms of the objective function value.

Table 5 presents the following aggregate comparisons: the best solutions computed via the new meta-

heuristics versus the best known solutions in [38], the best centralized metaheuristic (CE MH) versus the

best algorithm in [38], the best rolling horizon metaheuristic (RH MH) versus the best algorithm in [38].

In Table 5, Column 1 gives the three field instance code [model variant]-[time horizon]-[NOrmal or

DISrupted traffic]; Column 2 the type of comparison; Columns 3–5 the number of better solutions obtained

by the new metaheuristics, the average reduction of the objective function value (in seconds), the average

variation of the time (in seconds) to compute the best solution (we note that a negative variation means that

22



Table 5: Performance comparison between algorithms for each type of instance
Num Avg Value Avg Time Num Avg Time Num Avg Value Avg Time

Instance Type Comparison Type Better Reduction Variation Equal Variation Worse Increase Variation

Solut (sec) (sec) Solut (sec) Solut (sec) (sec)

Best Solut: MH vs [38] 0 - - 20 +20.0 0 - -

M1-60-NO Best Algo: CE MH vs [38] 0 - - 18 +9.5 2 4.5 +35.2

Best Algo: RH MH vs [38] 0 - - 19 +174.0 1 34.0 +151.9

Best Solut: MH vs [38] 0 - - 20 -10.6 0 - -

M2-60-NO Best Algo: CE MH vs [38] 1 1.0 -125.1 19 -4.6 0 - -

Best Algo: RH MH vs [38] 0 - - 17 +144.6 3 6.7 +81.3

Best Solut: MH vs [38] 0 - - 20 +15.6 0 - -

M3-60-NO Best Algo: CE MH vs [38] 1 26.0 +45.9 19 +26.6 0 - -

Best Algo: RH MH vs [38] 1 26.0 +180.0 17 +172.0 2 6.5 +146.2

Best Solut: MH vs [38] 6 5.5 -230.8 11 -183.1 3 11.0 -183.7

M1-180-NO Best Algo: CE MH vs [38] 5 29.8 -169.1 2 -129.8 13 27.2 -199.1

Best Algo: RH MH vs [38] 6 25.3 -103.3 5 -62.3 9 28.8 -104.7

Best Solut: MH vs [38] 4 21.3 -283.1 11 -194.3 5 11.0 -149.0

M2-180-NO Best Algo: CE MH vs [38] 5 24.6 -235.8 5 -282.1 10 14.2 -238.6

Best Algo: RH MH vs [38] 5 32.2 -172.7 6 -153.3 9 17.3 -176.0

Best Solut: MH vs [38] 6 17.5 -324.2 1 -207.9 13 27.8 -243.0

M3-180-NO Best Algo: CE MH vs [38] 4 10.0 -306.4 3 -334.1 13 31.1 -272.5

Best Algo: RH MH vs [38] 5 15.8 -238.8 1 -207.9 14 32.1 -197.4

Best Solut: MH vs [38] 10 160.4 -345.7 3 -397.6 7 87.4 -476.9

M1-180-DIS Best Algo: CE MH vs [38] 13 197.5 -684.7 0 - 7 114.3 -715.3

Best Algo: RH MH vs [38] 5 136.0 -540.0 7 -540.0 8 120.8 -540.0

Best Solut: MH vs [38] 9 109.7 -571.7 1 -445.1 10 103.6 -523.0

M2-180-DIS Best Algo: CE MH vs [38] 9 187.4 -683.1 0 - 11 110.2 -676.8

Best Algo: RH MH vs [38] 3 291.3 -540.0 6 -540.0 11 210.2 -540.0

Best Solut: MH vs [38] 20 96.6 -535.0 0 - 0 - -

M3-180-DIS Best Algo: CE MH vs [38] 13 162.6 -695.7 0 - 7 113.9 -679.3

Best Algo: RH MH vs [38] 5 223.2 -540.0 4 -540.0 11 164.6 -540.0

the new metaheuristics are faster, while a positive variation means that the new metaheuristics are slower);

Columns 6–7 the number of equal solutions obtained by the new metaheuristics, the average variation of the

best solution computation time (in seconds); Columns 8–10 the number of worse solutions obtained by the

new metaheuristics, the average increase of the objective function value (in seconds), the average variation

of the best solution computation time (in seconds).

For the 60-minute instances, the number of equal solutions is very large for all models and there is a

small time variation in computing the best known solutions by the different approaches. This is related to

the relative low complexity of the 60-minute delayed instances, and to the fact that the best known solutions

in [38] were already optimal. Furthermore, the best algorithms in [38] are often very fast to compute the

optimal solution, leaving a relatively small margin for further improving the computational performance.

On average, the new metaheuristics take a larger computation time. However, the best CE MH presents

a small increase of the computation time. Regarding the objective function value, the new metaheuristics

compute three better solutions than the best algorithm in [38].

For the 180-minute delayed instances, for 16 out of 60 instances the new metaheuristics compute a new

best known solution in a significantly smaller computation time compared to the one required to compute

the previously best known solution. For other 23 instances, the best known solution is computed by new

metaheuristics again in a smaller computation time compared to [38], while for the remaining instances

180 seconds of computation time are not sufficient to find the best known solution. In general, the main

advantage of the new metaheuristics is related to the quickness to compute their best solution.

For the 180-minute disrupted instances, a new best known solution is found by the new metaheuristics in

39 out of 60 cases, the same best known solution is found in 4 cases but with a strongly reduced computation
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time, and a worsening solutions is found with 180 seconds of computation in the remaining cases. For each row

of the table, the average solution value increase is always smaller than the average solution value reduction.

For all cases, a main advantage of the new metaheuristics (specially in the centralized framework) is again a

strongly reduced time to compute the best solution, which is an important requirement to fit the real-time

application of the proposed methodology even for the most difficult instances.

4.5 Discussion on the obtained results

Looking at the computational results, the main conclusions are next drawn. The new metaheuristics compute

good quality solutions in much less time compared to state-of-the-art algorithms for the 180-minute traffic

predictions. The results obtained by the new metaheuristics for the 60-minute traffic predictions are optimal,

even if, for the latter instances, a slightly larger computation time is required compared with the best

algorithms in [38]. A new best known upper bound value is provided for 55 out of the 120 instances for which

no optimal solution is yet proven. For the disrupted instances, the new neighbourhoods and metaheuristic

schemes, on average, outperform the best results obtained with the TS algorithm (i.e. the only algorithm

proposed in [38] that is able to compute a feasible solution for all ATC-TCA instances during the first

180 seconds) within one minute of computation on a standard processor. The VNS and VNTS algorithms

improve the results obtained by TS, since they explore multiple simultaneous aircraft re-routing actions and

allow additional aircraft re-scheduling flexibility in the air segment and runway resources.

When comparing the centralized versus the rolling horizon frameworks, the metaheuristics are, on average,

faster in the centralized framework. However, the solutions provided by the combination of the metaheuristics

with the rolling horizon framework help to find new best known solutions for a significant number of instances.

The strength of the rolling horizon approach is the problem decomposition in small time horizons, that has

the effect of simplifying the aircraft scheduling problem and thus enables a more effective evaluation of the

potential routing moves during the neighbourhood search strategy.

The metaheuristics present a different performance for the different types of instances. Regarding the

time horizon and type of disturbance, the 180-minute disrupted instances are more difficult to solve compared

to the other instances, since the 60-minute instances present a reduced number of variables and the 180-

minute delayed instances have a reduced number of deadline constraints. Regarding the model variants,

no significant performance difference is found when comparing M1 and M2, even if the two models have

a different number of due date constraints. On the contrary, M3 is more difficult to solve than the other

models, since there are additional deadline constraints compared to M1 and M2. We recall that the presence

of deadline constraints may strongly reduce the set of feasible schedules.

For the instances with deadline constraints, the new metaheuristics are performing very well compared

to the approaches in [38], since these complex traffic situations require to perform simultaneous aircraft

re-routing actions frequently in order to find good quality solutions. Another important reason is the use of

the deadline implications and the pre-processing procedure developed in [38], that help the metaheuristics

to find good quality solutions and to compute better solutions than the commercial MILP solver.
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5 Conclusions and future research

This paper proposes fast scheduling and routing metaheuristics for air traffic control at a busy TCA, consid-

ering aircraft sequencing, assignment of resources (routing) and timing of operations, with particular focus

on the efficient control of strong traffic disturbances (such as multiple aircraft delays and a temporarily

disrupted runway). To this end, several algorithmic innovations are considered, which relate to design of

effective metaheuristics based on a decomposition of the problem into scheduling and routing decisions. A

new set of neighbourhoods and new metaheuristic schemes are proposed on the basis of the hybridization

between a variable neighbourhood search and a tabu search. These algorithms are furthermore combined

with a rolling-horizon based decomposition framework.

The algorithms and frameworks are evaluated on an Italian practical case study, i.e. the TCA of Milan

Malpensa, and on a restricted group of instances found to be the most challenging in [38]. Those instances

are among the most complex instances in the literature of the ATC-TCA problem, including a large number

of aircraft and various sources of disturbances. We also compared the performance of the various approaches

for three model variants, with differences in the set of constraints.

The new metaheuristics are benchmarked against state-of-the-art ATC-TCA approaches which include

optimization algorithms developed in the AGLIBRARY solver and an MILP formulation for simultaneous

aircraft scheduling and routing solved by a commercial solver. The algorithms proposed in this paper, with

new neighbourhood structures and search strategies, improve the effectiveness of the previously developed

approaches. From the computational experiments, the main contributions are next summarized: a general

significant reduction of the time required to compute good quality solutions; a better performance in terms

of solution quality and computation time, especially for the most difficult instances including disruptions;

and the computation of new best known solutions for the several instances for which the optimal solution is

not yet proven.

The average computational behaviour of the new metaheuristics is also analyzed in depth, resulting in

a slightly slower descent compared to the TS (the best performing algorithm in [38] during the first three

minutes of computation) in the first 20 seconds. However, at around 1 minute of computation the new

metaheuristics offer the possibility to strongly reduce the objective function value computed by TS.

Future efforts should be dedicated to a path towards the implementation of advanced ATC-TCA ap-

proaches into a dynamic air traffic management system. The optimization models, algorithms and frame-

works presented in this work should be a core component of the intelligent transport system. Other issues are

worthwhile being investigated, including the development of good quality lower bounds for the ATC-TCA

problem, the extension of our methodology to better deal with aircraft speed variations in the arriving and

departing procedures, the integration and coordination with large-scale air traffic control measures.
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