
Apron Layout Planning - Optimal Positioning of Aircraft Stands
Thomas Hagspihla,d, Rainer Kolischa,e, Pirmin Fontaineb,f, and Sebastian Schiffelsc,g

Abstract

Airlines and airports share a common interest in maximizing the share of air traffic that is
processed at contact gates instead of remote parking positions. Handling aircraft at contact
gates is more efficient as passengers and cargo do not have to be conveyed between the terminal
building and parked aircraft by buses. More efficient operations allow for shorter connection
times, and thus enhance the network performance of airlines. Furthermore, the employment of
passenger boarding bridges at contact gates makes embarking and disembarking processes more
comfortable for passengers, adding to an improved overall passenger perception. To that end,
we optimize the layout of aircraft parking positions adjacent to an airport terminal with given
shape and dimensions, pursuing two lexicographically ordered objectives. First, we minimize
the number of aircraft that have to be diverted to remote parking positions, because positions
adjacent to the terminal are not available. Second, we minimize the construction effort required
for gate infrastructure. Collisions of parked aircraft must be prevented at all times, and we
consider various traffic situations, as traffic volume and fleet mix are not constant in time.
We introduce the Airport Gate Layout Problem and formulate it as a mixed-integer model,
which considers both greenfield and brownfield scenarios. To solve the problem efficiently, we
introduce a decomposition framework that exploits the structure of the problem and employ
various acceleration techniques. Our approach reduces computation times substantially, allowing
us to solve instances that are intractable for CPLEX. Based on a case study for Munich Airport,
we demonstrate how airports can gain valuable insights from solving the problem.

Keywords: Transportation; Airport Design; Airport Operations; Integer Programming; De-
composition

aTechnical University of Munich, TUM School of Management, Arcisstraße 21, 80333 Munich, Germany
bCatholic University of Eichstätt-Ingolstadt, Ingolstadt School of Management, Auf der Schanz 49, 85049 Ingol-

stadt, Germany
cUniversity of Augsburg, Institute of Business Administration, Universitätsstr. 16, 86159 Augsburg, Germany
dCorresponding author; thomas.hagspihl@tum.de
erainer.kolisch@tum.de
fpirmin.fontaine@ku.de
gsebastian.schiffels@uni-a.de

1 Introduction

At many airports, space on the apron is scarce and should therefore be used as efficiently as
possible (see, e.g., Caves 1994). We consider the situation where an airport terminal is to be either
constructed, extended, or refurbished and the arrangement of aircraft parking positions adjacent
to the terminal building needs to be determined. Compared to remote parking positions, the use of
parking positions adjacent to a terminal building is preferred by airlines, airports, and passengers
as operations are safer, more efficient, and more comfortable. Passengers and their baggage do not
need to be transported over longer distances and turnaround times are shorter. Consequently, the
apron layout should be designed to minimize the number of aircraft that have to be handled at
remote parking positions for space reasons.

When planning the layout, minimum safety distances between adjacent aircraft as well as air-
craft and airport infrastructure must be adhered to in order to prevent collisions (International
Civil Aviation Organization (ICAO) 2018, European Aviation Safety Agency (EASA) 2017). Fur-
thermore, there is a wide variety of aircraft types, which differ considerably with regard to their
dimensions, minimum safety distances, and requirements for parking position equipment. Hence,
the equipment to be installed at a parking position as well as the distances to adjacent parking
positions are based on the aircraft to be handled at the position, and the optimal overall layout
depends on the expected fleet mix at the airport. Moreover, traffic volume and fleet mix are sub-
ject to considerable fluctuations at most airports, especially at large hub airports. Thus, airports
are keen to identify the layout that minimizes the number of aircraft having to divert to remote
parking positions across all expected traffic situations. On the other hand, the (re-)construction
of a parking position adjacent to a terminal building is associated with high costs. For example,
investment costs of 450.000€ are to be expected per passenger boarding bridge (see, e.g., Airport
Improvement Magazine 2010, Travel PR News 2019). Consequently, among all alternatives that
minimize the number of aircraft that have to be handled at remote parking positions, airports are
particularly interested in determining the layout that minimizes the number of parking positions
that need to be built.

Currently, the planning problem described is mostly approached manually, with CAD programs
and simulation tools supporting the decision makers. However, while different layout proposals can
be evaluated relative to each other using simulation, there is currently a lack of possibility to assess
a proposal on its own, since the optimal layout is not known. Hence, the quality of the resulting
layout strongly depends on the experience and skills of the planner. We address this gap by finding
the best solution for a particular apron.

Layout planning problems in general have been considered from various perspectives in the
literature. Most prominently, existing work on the facility layout problem addresses the general
question of how individual facilities should be arranged within a given area, usually a factory
floor, in order to minimize the overall transportation costs of goods. Recent surveys on this class
of problems and its variations are provided by Drira, Pierreval, and Hajri-Gabouj (2007) and
Anjos and Vieira (2017). More application-specific layout planning problems are considered by

1

Briskorn and Dienstknecht (2019) and Huang, Wong, and Tam (2011), who investigate the optimal
positioning of tower cranes at construction sites, as well as Stephan, Weidinger, and Boysen (2021),
who maximize the capacity of parking lots. However, due to the complex geometries of aircraft,
the heterogeneity of different aircraft types, and the requirement that the layout be optimal with
respect to the totality of different traffic situations, none these approaches can be applied to our
problem.

Thus far, no studies have been published on optimizing the layout of parking positions at
airport aprons. There are several studies investigating apron capacity, which either assume the
layout is given or disregard it. For example, Mirkovic and Tosic (2014, 2016, and 2017) provide a
mathematical framework to describe the capacity of a given apron, and Steuart (1974), Bandara and
Wirasinghe (1989), Wirasinghe and Bandara (1990), Hassounah and Steuart (1993), and Narciso
and Piera (2015) present approaches to calculate the number of aircraft parking positions a terminal
should be equipped with.

A related problem on the operative level of decision making that considers airport gates is
the Gate Assignment Problem, in which arriving aircraft must be assigned to aircraft stands.
Typical objectives are to minimize the total passenger walking distance or to minimize the total
aircraft taxi time. Daş, Gzara, and Stützle (2020) find that recent work tends to consider multiple
objectives simultaneously. Extensive reviews on the gate assignment problem are provided by
Dorndorf et al. (2007), Cheng, Ho, and Kwan (2012), Guépet et al. (2015), and Daş, Gzara, and
Stützle (2020). Dorndorf, Jaehn, and Pesch (2008, 2012, and 2017) also consider the prevention of
collisions between parked aircraft in their models. However, in contrast to the recurrent operative
task to assign arriving aircraft to available gates, defining the layout represents a strategic problem.

In conclusion, no literature exists to date in which the layout of aircraft parking positions is
optimized by means of mathematical programming, nor can other existing modeling approaches
be directly applied to this problem. In the following, we introduce all aspects of the Airport Gate
Layout Problem (AGLP) in detail and provide a mixed-integer formulation that can be applied to
both greenfield and brownfield instances. We develop an exact procedure for solving the problem, in
which we combine a decomposition approach with a bounding algorithm and a relaxation scheme.
In a case study, we demonstrate the superiority of our solution procedure over CPLEX and show
how the results of our work can support decision makers in practice.

The remainder of this paper is structured as follows: In Section 2, we provide a detailed problem
description, and our modeling approach is described in Section 3. The resulting mathematical
model and our solution methodology are provided in Sections 4 and 5, respectively. In Section 6,
we present our computational experiments based on real world data, and we provide our conclusions
in Section 7.

2

2 Problem Description

Planning problem We consider the situation where an airport terminal is to be constructed,
extended, or refurbished and the aircraft parking positions adjacent to the terminal building must
be planned. The position, shape, and dimensions of the terminal building and surrounding taxiways
are given and define the areas where parking positions can be planned. Furthermore, a forecast for
the traffic that needs to be accommodated at the apron is available. In this planning problem, we
pursue two objectives, which are ordered lexicographically. The primary goal is to minimize the
number of aircraft that cannot be parked in close proximity to the terminal building; the secondary
goal is the minimization of the implementation costs of the layout. That is, if a new terminal or a
terminal extension is in planning, the number of parking positions to be built should be minimized.
If an existing terminal is to be refurbished, as few changes as necessary should be made to the
existing layout.

Aircraft parking positions We will use the following terminology with respect to aircraft park-
ing. The terms gate and aircraft stand refer to a subarea of the terminal apron utilized to accom-
modate an aircraft and are used synonymously. Aircraft stands in the immediate vicinity of the
terminal building are called contact stands, while stands at a greater distance from the terminal
are referred to as remote stands.

Gates need to be equipped to handle aircraft, with equipment specifications depending on the
aircraft types to be accommodated at the gate. For example, a gate at which small aircraft are to
be handled must be equipped with a single passenger boarding bridge. At gates where large aircraft
are to be handled, however, a second (or even a third) passenger boarding bridge must be installed
to guarantee appropriate passenger boarding and deboarding times. The equipment installed at
a gate is downward compatible. In other words, if an aircraft of a certain size can be handled at
a gate, other aircraft of the same size and all smaller aircraft can also be handled. Furthermore,
gates can also be equipped to handle either one large aircraft or two small aircraft simultaneously.
Such gates are referred to as Multi Aircraft Ramping Stands (MARS) (see NASEM 2010).

Due to the large number of infrastructure elements to be procured (for example, passenger
boarding bridges, fuel, power and fresh air connections, ground markings, equipment inside the
terminal), the construction of a new gate is expensive. In addition, since more or larger equipment
is needed to handle larger aircraft, the investment costs per gate increase with the size of the aircraft
to be handled. As a result, the number of gates to be built or rebuilt, especially those capable of
handling large aircraft, should be minimized as long as this does not reduce the airport’s ability to
handle air traffic.

Aircraft handled at contact stands are commonly parked in the nose-in orientation, in which the
noses of parked aircraft point toward the terminal facade. The exact parking positions of aircraft
at gates are defined by lead-in lines and stop lines: When parked, the fuselage of the aircraft is
aligned collinearly with the lead-in line and the nose wheel is at the stop line belonging to the
aircraft type. Each lead-in line is assigned to exactly one gate, whereas each gate must have at

3

least one lead-in line. Lead-in lines can be placed at any angle to the terminal facade. Although
a greater number of lines per gate increases flexibility in terms of parking aircraft at gates, as few
lead-in lines as possible should be used to minimize complexity in daily operations1. Lead-in lines
are typically linear and can therefore be defined by a starting point and an ending point. Figure 1
shows the ground layout of three gates at the airport of Nice, where gate 46 is a MARS position.

Figure 1: Gates 42, 44, and 46 at the airport of Nice (Source: Google Maps)

Aircraft classes To ensure collision-free operations on the apron, the geometries of the aircraft
to be handled must be taken into account in the planning process. Because of the large number
of aircraft types, planning is simplified by grouping aircraft into size classes. We will use the
Aerodrome Reference Code (ARC) for that purpose, which is reproduced by ICAO (2018) and
EASA (2017) and classifies aircraft according to wingspan, see Table 12.

Table 1: Classification of aircraft (ICAO 2018 and EASA 2017)

ARC letter Wingspan [m] Safety clearance [m] Reduced safety clearance [m]

A < 15 3 3
B 15 - 24 3 3
C 24 - 36 4.5 3
D 36 - 52 7.5 4.5
E 52 - 65 7.5 4.5
F 65 - 80 7.5 4.5

Aircraft parking restrictions There are few regulations regarding the design of aircraft stands.
Most importantly, ICAO (2018) and EASA (2017) consistently define minimum safety clearances
that must always be maintained between an aircraft and any other aircraft as well as airport
structures. The minimum safety clearances depend on the ARC letter of the particular aircraft,

1MARS positions must have at least two lead-in lines to accommodate two small aircraft simultaneously.
2The same classification is introduced by FAA (2012) using a different notation.

4

and are reduced at aircraft stands equipped with a visual guidance docking system or other special
cases apply. General and reduced safety clearances per ARC letter are provided in Table 1.

Parking an aircraft of a given class at a specific lead-in line may be prohibited for three reasons.
First, certain areas of the apron may be inaccessible to aircraft of a certain class and above. Second,
the location of a lead-in line, in combination with the layout of the surrounding infrastructure, might
result in only aircraft up to a certain class being allowed to park on the line, as otherwise minimum
safety clearances between aircraft and infrastructure would be violated or the aircraft would collide
with the infrastructure. Third, the parking of an aircraft of a given class on a particular lead-in line
could be temporarily prohibited if another aircraft of the same or a different class is being handled
simultaneously at an adjacent position. The reason for this restriction is again to avoid violations
of minimum safety clearances as well as collisions.

Air traffic characteristics at hub airports Traffic volumes and fleet mix are typically subject
to significant fluctuations during the course of the day at hub airports. Traffic arrives and departs
in waves, so airlines can offer their passengers comparatively short transfer times and a large
number of transfer connections. Arrival and departure waves directly propagate to the situation
on the apron, where the number and composition of the aircraft to be handled simultaneously can
fluctuate considerably. To avoid recurring congestion, the apron should therefore be designed to
handle as much of the expected peak-time traffic as possible at contact gates.

Moreover, the apron should not only be designed for current traffc peaks, but in anticipation
of expected future traffic developments due to the high costs associated with gate infrastructure
as well as the high operational effort and financial burden in case of future changes to the layout.
For example, the proportion of very large ARC letter F aircraft is likely to decline in the medium
term, as both Airbus and Boeing recently ceased production of their only ARC letter F aircraft,
the A380 and 747-8, respectively, due to lack of demand. In contrast, the proportion of slightly
smaller ARC letter E aircraft can be expected to trend upward due to their better fuel efficiency
and greater operational flexibility.

3 Modeling Approach

Representation of air traffic We model air traffic on the apron analogous to Hagspihl et al.
(2022); i.e., we represent air traffic as a collection of snapshots, each containing the number of
aircraft per class that must be handled simultaneously at one particular point in time where traffic
volume reaches a peak. We refer to these snapshots as demand patterns.

Demand patterns are extracted from a flight plan as follows. We classify aircraft based on
their respective ARC letters, resulting in the set of aircraft classes A = {1, . . . , A}, where aircraft
classes are sorted by ascending size. Using the flight schedule, we then determine the number of
aircraft per class to be parked simultaneously over time. Let Dat denote the number of aircraft
of class a ∈ A to be handled simultaneously at a given point in time t ∈ T . We create a demand

5

pattern (D1t, D2t, . . . , DAt) for time t if there is no other time t̂ in the schedule that dominates t,
i.e., at which Dat ≤ Dat̂ ∀a ∈ A and ∃a ∈ A : Dat < Dat̂ holds. The set of all demand patterns
resulting from that process is denoted as K = {1, . . . ,K} ⊆ T . In the following, Dak represents the
number of aircraft of class a ∈ A that are to be parked simultaneously for demand pattern k ∈ K.
Each value of Dak is associated with a weighting factor Wak ∈ [0, 1], which indicates the relative
importance of accommodating aircraft of class a ∈ A for demand pattern k ∈ K. The value of
Wak depends on the size of the aircraft in class a ∈ A and the frequency of occurrence of demand
pattern k ∈ K. The larger an aircraft, the more passengers it can carry and the more important it
is that it can be parked at a contact gate. Hence, larger aircraft classes are associated with higher
values of Wak. The more frequently a demand pattern is expected to occur, the more relevant it is
for the planning process. Thus, demand patterns with a higher expected frequency of occurrence
are associated with higher values of Wak as well.

Aircraft parking positions Aircraft must be parked on lead-in lines, and each lead-in line used
to park an aircraft must be assigned to a gate. We employ the given layout of the terminal building
and the surrounding taxiways to derive sets of feasible positions for gates and lead-in lines in the
following.

In the first step, we identify polygons as subareas of the apron inside which lead-in lines can
be placed. The edges of these polygons are given either by airport infrastructure that must not be
infringed upon by aircraft (for instance, the terminal facade or edges of the apron), or by taxiways.
Second, in each polygon we define a set of starting points for lead-in lines; by starting point we
mean the point of the lead-in line at which the nose of a parked aircraft is located. The starting
points are placed at a constant distance ∆ > 0 from each other and at a constant safety distance
from the terminal facade.

Third, we create lead-in lines by drawing straight lines from the starting points until they
intersect with an edge of the surrounding polygon. These intersections define the ending points
of the lead-in lines. We generate multiple lead-in lines from each starting point by varying the
direction of the line. Therefore, parameter κ denotes the rotation angle between the lead-in lines
that share the same starting point, 0 < κ < 360◦ and 360◦ should be an integer multiple of κ.
Both ∆ and κ are parameters of our approach that determine the planning granularity and must
be specified up-front. Lead-in lines whose ending point is not on a taxiway cannot be reached by
aircraft and are therefore discarded. All remaining lead-in lines resulting from this process are
included in set L = {1, . . . , L}. Figure 2 shows an example of a terminal building with possible
lead-in lines.

Each lead-in line used to park an aircraft has to be assigned to a gate. Thus, we define potential
gate positions and introduce a parameter that indiciates whether a lead-in line can be assigned to a
gate or not. We consider the set of lead-in line starting points as the set of possible gate positions.
All potential gates are contained in set G = {1, . . . , G}. For each pair of lead-in line l ∈ L and
gate g ∈ G, binary parameter Flg equals 1, if the direct path between lead-in line l and gate g is

6

Figure 2: Example for generation of lead-in lines

unobstructed and smaller than a given threshold, and lead-in line l can therefore be assigned to
gate g. Otherwise, Flg equals 0.

Aircraft parking restrictions Parking an aircraft of a particular class on a particular lead-
in line could be either permanently or temporarily prohibited to prevent collisions with airport
infrastructure or other aircraft parked at adjacent positions. To identify all such infeasibilities, we
apply a two-step procedure.

First, we compute a so-called safety envelope for each aircraft class. The safety envelope of an
aircraft class a ∈ A is defined by the smallest possible polygon with the shape shown in Figure 3
inside which all aircraft of the class can be parked in a given orientation, including the minimum
safety distances required according to Table 1. We compute the safety envelope for each aircraft
class based on the geometry data of all aircraft types belonging to the class. The safety envelopes
of all classes have the shape as shown in Figure 3 and differ only in the dimensions. Details are
provided in Appendix B.

Second, for each aircraft class a ∈ A and lead-in line l ∈ L, we use the safety envelopes to
determine whether or not the aircraft can generally be parked on the line, and whether or not the
aircraft can be parked on the line if another aircraft of class b ∈ A is parked on another lead-in line

7

Figure 3: Shape of safety envelopes (Source of aircraft model: Airbus 2022)

m ∈ L \ {l} at the same time. If we place the safety envelope of an aircraft class on a lead-in line
and the safety envelope then touches or intersects an edge of the surrounding polygon, i.e., collides
with airport infrastructure, no aircraft of that class can be parked on the lead-in line. As a result,
the binary parameter Cal equals 1 if aircraft of class a ∈ A can be accommodated on lead-in line
l ∈ L, and 0, otherwise. Cal also equals 0 if lead-in line l is located in an area of the apron that
cannot be reached by class a aircraft. If Cal = 0 for a given lead-in line l ∈ L and all aircraft classes
a ∈ A, line l is discarded. Similarly, for all combinations of two lead-in lines l,m ∈ L : l 6= m

and two aircraft classes a, b ∈ A, we place the safety envelopes of classes a and b on lines l and m,
respectively, and then examine whether the safety envelopes collide with each other (for details, we
refer to Appendix C). Binary parameter Elmab is 1 if aircraft of classes a and b cannot be handled
simultaneously without collision at lead-in lines l and m, and 0, otherwise.

4 Model

In this section, we present a mixed-integer linear program for the AGLP. The notation is summa-
rized in Table A.1 in Appendix A.

Decision variables First, the binary decision variable vga indicates whether or not gate g ∈ G is
equipped to handle aircraft of class a ∈ A. If vga = 0 for all aircraft classes a ∈ A, gate g ∈ G cannot
handle aircraft of any class and hence, is not built. Furthermore, from the downward compatibility
of gate equipment it follows that if vga = 1, then vgâ = 1 ∀â ∈ A : â < a.

Second, the binary decision variable yl equals 1 if lead-in line l ∈ L is used to park an aircraft
for any demand pattern k ∈ K, and 0, otherwise.

Third, the binary decision variable ugl is 1 if lead-in line l ∈ L is assigned to gate g ∈ G, and 0,
otherwise.

Fourth, the binary decision variable xglak equals 1 if for demand pattern k ∈ K an aircraft of
class a ∈ A is parked at lead-in line l ∈ L and lead-in line l is assigned to gate g ∈ G, and 0,
otherwise.

8

Finally, the non-negative decision variable qak yields for each demand pattern k ∈ K the number
of aircraft of class a ∈ A that cannot be accommodated at any of the lead-in lines in set L, and
hence, need to deviate to remote stands.

Model formulation We formulate the AGLP as follows:

min z1 =
∑
a∈A

∑
k∈K

Wak · qak (1a)

min z2 =
∑
g∈G

∑
a∈A

vga (1b)

subject to∑
g∈G

∑
l∈L:Cal=1∩Flg=1

xglak + qak ≥ Dak ∀a ∈ A; k ∈ K (1c)

∑
g∈G:Flg=1

∑
a∈A:Cal=1

xglak ≤ yl ∀l ∈ L; k ∈ K (1d)

∑
g∈G:Flg=1

ugl = yl ∀l ∈ L (1e)

xglak ≤ ugl ∀g ∈ G; l ∈ L; a ∈ A; k ∈ K : (1f)

Flg = 1;Cal = 1∑
l∈L:Flg=1

∑
a∈A:Cal=1

a · xglak ≤
∑
a∈A

vga ∀g ∈ G; k ∈ K (1g)

vga ≤ vgb ∀g ∈ G; a ∈ {2, . . . , A} ; (1h)

b = a− 1

∑
l∈L:Flg=1

 ∑
a∈Asmall:Cal=1

xglak +
∑

a∈Alarge:Cal=1

2 · xglak

 ≤ 2 ∀g ∈ G; k ∈ K (1i)

∑
g∈G:Flg=1

xglak +
∑

h∈G:Fmh=1

xhmbk ≤ 1 ∀l,m ∈ L; a, b ∈ A; k ∈ K : (1j)

Elmab = Cal = Cbm = 1; l < m

qak ≥ 0 ∀a ∈ A; k ∈ K (1k)

vga ∈ {0, 1} ∀g ∈ G; a ∈ A (1l)

xglak ∈ {0, 1} ∀g ∈ G; l ∈ L; a ∈ A; k ∈ K : (1m)

Flg = 1;Cal = 1

yl ∈ {0, 1} ∀l ∈ L (1n)

ugl ∈ {0, 1} ∀g ∈ G; l ∈ L : Flg = 1 (1o)

9

The two lexicographically ordered objective functions are given in (1a) and (1b). Objective
Function (1a) minimizes the number of aircraft that cannot be processed at any of the lead-in lines
in set L over all demand patterns k ∈ K, where the values of qak are weighted with weighting
factors Wak. Objective Function (1b) minimizes the number of gates to be built.

Demand constraints (1c) ensure for each aircraft class and demand pattern that either all aircraft
are handled at contact gates or qak is increased accordingly. Constraints (1d)-(1h) determine the
correct infrastructure decisions: Constraints (1d) make sure that the value of yl equals 1 once
lead-in line l ∈ L is used to park an aircraft. Constraints (1e) enforce that each lead-in line that is
used to park an aircraft is assigned to exactly one gate. That is, while a lead-in line can be used to
park an aircraft for more than one demand pattern, it has to be assigned to the same gate for all
demand patterns. Constraints (1f) align the values of variables xglak and ugl, and Constraints (1g)
ensure that gates are built and equipped for the aircraft classes they are supposed to handle. Note
that when two small aircraft are handled simultaneously at one gate (MARS), the left side of the
constraint takes both aircraft into account. For example, if two aircraft of class 1 are handled at
a gate simultaneously, the left side of Constraints (1g) equals 2. Hence, the constraint necessitates
that the gate be equipped for aircraft of class 2. This takes into account that gates at which two
aircraft of a class are handled simultaneously require more equipment than gates at which only one
aircraft of the same class is handled. Most obviously, two passenger boarding bridges need to be
installed to handle two aircraft simultaneously. Constraints (1h) make sure that gate equipment
is downward compatible, and Constraints (1i) enforce that a maximum of two aircraft (either two
small aircraft or one large aircraft) can be handled at one gate simultaneously. For that purpose, we
divide all aircraft classes from set A into two subsets Asmall and Alarge, each containing the aircraft
classes of which two and one aircraft, respectively, can be handled simultaneously at a gate. Asmall

contains ARC letter C aircraft and all smaller aircraft, while Alarge contains all aircraft belonging
to ARC letter D or larger. Safety constraints (1j) prevent minimum safety clearances from being
violated or aircraft from colliding with each other. Finally, Constraints (1k)-(1o) define the domains
of all decision variables.

Brownfield scenarios If an existing terminal is to be renovated or extended and existing parking
positions can be relocated in the process, deviations from the existing gate layout should be kept to
a minimum to minimize investment costs. More specifically, additional gates should only be built
if they yield an improvement of z1.

In a brownfield scenario, the set G is extended by the gates that already exist in reality. Addi-
tionally, we introduce the binary parameter Hga, whose value is 1, if existing gate g ∈ G is equipped
to handle an aircraft of class a ∈ A, and 0, otherwise. To account for the downward compatibility
of gates, Hgâ = 1 for all â ∈ {0, . . . , a− 1} if Hga = 1. For all gates in G which do not yet exist in
reality, Hga equals 0 for all a ∈ A.

Then, Model (1a)-(1o) is extended by the following constraints to ensure that existing gates are
considered in the optimization process.

10

vga = Hga ∀g ∈ G; a ∈ A :
∑
â∈A

Hgâ > 0 (1p)

Aggregating constraints For small distances ∆ and rotation angles κ between adjacent lead-
in lines, the number of Safety constraints (1j) becomes very large. We mitigate this problem by
aggregating Constraints (1j) where possible. That is, omitting gates and demand patterns, we merge
two Constraints (1j) xla + xmb ≤ 1 and xla + xnc ≤ 1 into one a new constraint xla + xmb + xnc ≤
1, where l,m, n ∈ L and a, b, c ∈ A. Note that the aggregated constraint is equivalent to the
individual constraints only if the original Constraints (1j) contain a constraint xmb + xnc ≤ 1.
Otherwise, enforcing Elnac = 1 would make the aggregated constraint more restrictive than the set
of original constraints. We add further variables to the aggregated constraint, as long as for each
pair of variables contained in the aggregated constraint there exists one original Constraint (1j)
that contains both variables as well. With the remaining variables that could not be added to the
aggregated constraint, we then try to construct an additional aggregated constraint employing the
same procedure. Once the restriction represented by a constraint of type (1j) is reflected in one of
the aggregated constraints, it is removed from the model. We create further aggregated constraints
until all original Constraints (1j) are removed from the model. The algorithm itself is presented in
Appendix D.

In addition to reducing the number of constraints needed, this formulation strengthens the LP
relaxation of the problem, which reduces computation times considerably.

5 Solution Methodology

The results of our computational experiments in Section 6 will demonstrate that Model (1a)-
(1p) quickly becomes intractable for decreasing values of ∆ and κ. Therefore, we introduce a
decomposition approach, which allows solving instances with high planning granularity within
reasonable computation time to optimality. We will first give an overview in Section 5.1 before
providing detailed insights into individual components in Sections 5.2 to 5.4. Finally, we will present
the acceleration techniques that we use to support our approach in Section 5.5. The notation used
in this section is summarized in Table A.2 in Appendix A.

5.1 Overview

We provide a summary of our solution approach as pseudo-code in Algorithm 1.
First, we decompose the apron into a set of areas S = {1, . . . , S} that are independent with

respect to Safety constraints (1j), intending to solve the AGLP for each area separately (line
1 in Algorithm 1, see Section 5.2); however, Demand constraints (1c) consider the apron as a
whole. Thus, in order to solve the problem for each area independently, we must first decide
for each demand pattern how many aircraft of which class(es) are to be assigned to which area.

11

Algorithm 1 Overview of our solution approach

1: Find set of areas S . See Section 5.2
2: Find set of demand decompositions C . See Section 5.3
3: Determine initial value of LBc for all c ∈ C . See Section 5.4
4: i← 1
5: while | C |> 1 do
6: Select ĉ ∈ C where LBĉ ≤ LBc for all c ∈ C \ {ĉ}
7: Solve the subproblems associated with ĉ . See Section 5.5
8: if i = 1 then
9: Determine UB based on the solution obtained

10: else
11: If possible, update UB and LBc for all c ∈ C
12: end if
13: Eliminate all c ∈ C where LBc ≥ UB
14: i← i+ 1
15: end while

Among the many possible ways to decompose demand patterns, we only consider those where (i)
all aircraft assigned to an area can be parked at contact gates in the particular area and where
(ii) the total number of aircraft (weighted by Wak) that cannot be assigned to any area due to (i)
is minimized. We call each of the resulting assignments a demand decomposition, and the set of
demand decompositions is denoted by C = {1, . . . , C} (line 2, see Section 5.3).

Let z∗1 and z∗2 denote the optimal values of Objective Functions (1a) and (1b), respectively.
Similarly, let z∗1c and z∗2c be the optimal values of Objective Functions (1a) and (1b) when aircraft
are assigned to areas according to demand decomposition c ∈ C (z∗1c ≥ z∗1 and z∗2c ≥ z∗2). As we
will show in Section 5.3, ensuring (i) and (ii) is equivalent to minimizing Objective Function (1a),
and thus all demand decompositions in c ∈ C lead to z∗1 , i.e., z∗1c = z∗1 ∀c ∈ C. In order to solve the
AGLP to optimality, we must identify a demand decomposition c ∈ C that also leads to z∗2 , i.e.,
where z∗2c = z∗2 . We reduce the number of demand decompositions that need to be examined to
find z∗2 and to prove optimality of z∗2 by means of a bounding algorithm (lines 5 to 15). First, we
compute a lower bound LBc on z∗2c for each demand decomposition c ∈ C (line 3, see Section 5.4).
Then, we select the demand decomposition with the lowest value of LBc and determine z∗2c. The
result poses an upper bound UB on z∗2 . Thus, we can remove all demand decompositions from C
for which LBc ≥ UB holds (line 13). Furthermore, we will show in Section 5.4 that the solution
may be used to update LBc′ for other demand decompositions c′ ∈ C \ {c}, potentially leading
to their removal from C as well. In the next iteration, we again select the demand decomposition
c ∈ C with lowest value of LBc. We repeat this process until no demand decomposition remains in
C. Then, the value of UB equals z∗2 .

To determine z∗2c for one demand decomposition c ∈ C, we solve Model (1b)-(1p) separately
for each area s ∈ S (line 7, see Section 5.5). We call the resulting models the subproblems of

12

the AGLP, and we denote the optimal objective function value of the subproblem associated with
demand decomposition c ∈ C and area s ∈ S with z∗2cs. When the subproblems for all areas s ∈ S
have been solved for demand decomposition c ∈ C, we calculate z∗2c as

∑
s∈S

z∗2cs. We provide the

mathematical formulation of a subproblem in Appendix E.

5.2 Decomposing the apron into independent areas

We partition the apron into independent areas S in an iterative process. A terminal facade can be
described as a polygonal chain, consisting of a sequence of connected line segments. We initially
assume that all gates and lead-in lines located before the same line segment are part of the same
area, and that gates and lead-in lines located in front of different line segments belong to different
areas. Let Gs and Ls be the resulting sets of lead-in lines and gates belonging to area s ∈ S.

Definition 1 (Independence of areas). Two areas s, t ∈ S, s 6= t are independent iff Elmab =

0 ∀l ∈ Ls;m ∈ Lt; a, b ∈ A.

If two areas s, t ∈ S, s 6= t are not independent according to Definition 1, we combine both areas
into a new area u (Lu = Ls ∪ Lt, Gu = Gs ∪ Gt), add u to S, remove s and t from S, and check
again whether all areas s ∈ S are mutually independent according to Definition 1. The process is
finished when all areas in S are confirmed to be independent.

5.3 Determining the set of demand decompositions

We identify demand decompositions using a two-step procedure: First, we determine for each area
s ∈ S how many aircraft of which classes can be parked simultaneously at lead-in lines Ls.

Definition 2 (Parking patterns). Let ra ∈ N0 represent a number of class a ∈ A aircraft. We
call (r1, r2, . . . , rA) a feasible parking pattern for an area if all aircraft r1, r2, . . . , rA can be parked
at contact gates of the area simultaneously. Let rap ∈ N0 denote the number of aircraft of class
a ∈ A that are parked simultaneously in a parking pattern p. We call p = (r1p, r2p, . . . , rAp) an
efficient parking pattern for an area if rap cannot be increased for any a ∈ A without leading to
infeasibility with respect to Safety constraints (1j). The set of efficient parking patterns associated
with area s ∈ S is denoted by Ps.

Example 1. Let A = {1, 2}, with a = 1 and a = 2 representing small and large aircraft, respec-
tively. Assume that in a given area it is possible to park a maximum of four small aircraft when
zero large aircraft are parked, and that a maximum of two large aircraft can be parked when zero
small aircraft are parked. Furthermore, assume that two small aircraft can be parked when the
number of large aircraft that are parked is one. Then, the set of efficient parking patterns for area
s ∈ S is given as Ps = {(4, 0) , (2, 1) , (0, 2)}.

Second, once Ps has been determined for all areas s ∈ S, we create demand decompositions by
selecting one parking pattern p ∈ Ps for each demand pattern k ∈ K and area s ∈ S.

13

Definition 3 (Demand decompositions). Let the function p (c, s, k) return the parking pattern
p that is selected from Ps for area s ∈ S and demand pattern k ∈ K in demand decomposition
c ∈ C. Then, demand decomposition c ∈ C is defined as

p (c, 1, 1) p (c, 1, 2) . . . p (c, 1,K)

p (c, 2, 1) p (c, 2, 2) . . . p (c, 2,K)
...

...
...

...
p (c, S, 1) p (c, S, 2) . . . p (c, S,K)

 .

Patterns are selected such that
∑
a∈A

∑
k∈K

Wak ·
(
Dak −

∑
s∈S

rap(c,s,k)

)
is minimized, which is equivalent

to Objective Function 1a.

In the following, let Pcs = {p (c, s, 1) , p (c, s, 2) , . . . , p (c, s,K)} contain the parking patterns
from the s-th row of demand decomposition c ∈ C.

5.3.1 Identifying efficient parking patterns

To determine the set of efficient parking patterns Ps for area s ∈ S, we employ a graph-based
approach, which is inspired by existing work on identifying the set of pareto-efficient paths through
a network (see, e.g., Martins 1984, Tung Tung and Lin Chew 1992) and dynamic programming.

We create a directed graph in which each feasible combination of lead-in line l ∈ Ls and aircraft
class a ∈ A (Cal = 1) is represented by a node (l, a). Arcs between nodes represent feasible
combinations of two parked aircraft, i.e., two nodes (l, a) and (m, b) are connected if Elmab = 0.
Arcs are directed from lead-in lines with lower indices to lead-in lines with higher indices. We add
two dummy nodes to the network, one representing a single source and the other representing a
single sink. For each non-dummy node, an in-arc is added from the source node and an out-arc
is added to the sink node. Each path through this network corresponds to one feasible, yet not
necessarily efficient parking pattern for the respective area. We construct paths incrementally by
iterating over all nodes, starting at the source node. Each iteration consists of two steps: First,
we compare all paths that lead into the particular node and prune paths if possible. Second, we
extend all non-dominated paths leading into the node to all nodes, which can be reached from that
node.

A path is pruned if it is dominated by another path (see Lemma 1) or it becomes apparent that
the parking pattern associated with it is not needed given the demand patterns (see Lemma 2).
Let σ(i)aπ denote the number of class a ∈ A aircraft parked in path π leading from the source node
to node i.

Lemma 1 (Path dominance). A path π1 dominates another path π2 if σ(i)aπ1 ≥ σ
(i)
aπ2 ∀a ∈ A and

σ
(i)
aπ1 > σ

(i)
aπ2 ∃a ∈ A.

The proof directly follows from Definition 2. If paths π1, π2, . . . , πn are equivalent, i.e., σ(i)aπ1 =

σ
(i)
aπ2 = . . . = σ

(i)
aπn ∀a ∈ A, one path is selected arbitrarily and all other paths are pruned. �

14

Lemma 2 (Paths and demand patterns). A path π can be pruned if σ(i)aπ > maxk∈K {Dak} ∃a ∈
A at a given node i.

We consider situations where space is scarce, i.e., the optimal value of Objective Function (1a)
is larger than 0 with respect to each demand pattern k ∈ K. Thus, parking more class a ∈ A
aircraft than is required for any of the demand patterns in K would translate to fewer aircraft of
another class b ∈ A that can be parked and hence, would result in a worse outcome with respect
to Objective Function (1a). �

Example 2. Assume there are A = 2 aircraft classes and demand patterns (15, 0), (13, 1), and
(10, 2). Then, a path π with σ2π = 3 can be pruned, since no more than two aircraft of class 2

needs to be accommodated for any demand pattern.

Before we extend a path to node (m, b), we verify that parking a class b aircraft at lead-in
line m does not lead to collisions with any other aircraft already considered in the path, i.e., that
Elmab = 0 for all nodes (l, a) already included in the path. While the definition of arcs ensures
that this is always true for the node that was most recently added to the path, it may not be true
for nodes added to the path earlier. Whenever we find that Elmab = 1 for any node (l, a) already
included in the path, we do not extend the path to node (m, b). We observe this phenomenon when
the value of κ is small and/or when the terminal facade has a corner.

After the last iteration, i.e., when all paths have reached the sink node, none of the remaining
paths is dominated by another path. Thus, each path that reaches the sink node is associated with
a unique and efficient parking pattern for area s.

5.3.2 Creation of demand decompositions

A demand decomposition c ∈ C is created by selecting one parking pattern p ∈ Ps for each area s ∈ S
and demand pattern k ∈ K. Depending on the cardinalities of Ps, S, and K, the number of possible
demand decompositions may be very large. However, we are only interested in those demand
decompositions that lead to z∗1 . Objective Function (1a) as well as demand decompositions can be
decomposed with respect to demand patterns k ∈ K. Let z∗1k be the optimal value of Objective
Function (1a) with respect to demand pattern k ∈ K, i.e., z∗1 =

∑
k∈K

z∗1k. In order to lead to z∗1 , a

demand decomposition must lead to z∗1k for each k ∈ K; we use this by dividing the process to create
demand decompositions intoK+1 stages. In the k-th stage, we pretend that demand pattern k is the
only demand pattern that exists and create the set of all possible demand decompositions, which we
denote as Ck. Following the matrix representation of demand decompositions as given in Definition
3, each demand decomposition c ∈ Ck is a column vector (p (c, 1, k) , p (c, 2, k) , . . . , p (c, S, k))T .
Next, for each c ∈ Ck we calculate the associated value of Objective Function (1a) with respect to

demand pattern k as
∑
a∈A

(
Wak ·max

{(
Dak −

∑
s∈S

rap(c,s,k)

)
, 0

})
. Then, we determine z∗1k as the

minimum of the results and remove all c ∈ Ck not leading to z∗1k. Thus, in each stage k ∈ K we
obtain the set of vectors that can be chosen for column k in demand decompositions c ∈ C. In stage

15

K + 1, Ck has been determined for all k ∈ K and we can create the set of demand decompositions
C. That is, one demand decomposition c ∈ C is created by selecting one c ∈ Ck for each k ∈ K.

5.4 Computing lower bounds for demand decompositions

The value of the lower bound LBc for a demand decomposition c ∈ C is derived from the minimum
number of gates needed to handle all aircraft contained in demand decomposition c and the required
equipment for these gates. Since each demand decomposition c ∈ C defines how many aircraft of
which class are assigned to which area s ∈ S and the gates of the areas can be planned independently,
we first compute area-specific partial bounds LBcs and then compute LBc as LBc =

∑
s∈S

LBcs.

This division into area-specific bounds LBcs has two advantages: First, calculating LBc as the
sum of the area-specific bounds LBcs leads to a tighter bound on the value of Objective Function
(1b), because the assignment of aircraft to areas is incorporated in the values of LBcs. Second,
different demand decompositions c1, c2 ∈ C are often equivalent with respect to individual areas
s ∈ S, i.e., Pc1s = Pc2s. From this follows LBc1s = LBc2s. Thus, once the subproblem of demand
decomposition c1 is solved to optimality for area s, not only can LBc1s be updated, but also LBc2s

and hence, LBc2 . This potentially allows eliminating c2 if LBc2 > UB after the update.
When computing LBcs for a pattern configuration c ∈ C and an area s ∈ S, we do not specify

which of the gates from Gs are used but we only consider the minimum number of gates required
per aircraft class. However, we take downward compatibility of gates as well as MARS mode into
account. We provide our algorithm to compute LBcs in Appendix F.

5.5 Acceleration techniques

We apply a number of problem-specific acceleration techniques to improve the performance of our
approach.

Solution pool Subproblems for a given area s ∈ S are often identical for different demand de-
compositions, i.e., the same number of aircraft per class are assigned to a given area in different
demand decompositions. Therefore, we make use of a solution pool, in which we store the so-
lutions to all subproblems already solved and which we inspect each time before solving another
subproblem.

Solving relaxed subproblems Each time we search for the optimal solution of a subproblem,
we iteratively solve a relaxation of the problem and try to show that the solution satisfies all
constraints that were relaxed. If the latter fails, we add the violated constraints to the relaxation
and re-solve it in the next iteration. Otherwise, the solution is feasible for the original subproblem.
Similar approaches exist in literature on the vehicle routing problem, where subtour elimination
constraints are relaxed and added to the problem only when they are violated by the solution (see,
e.g., Laporte, Desrochers, and Nobert 1984). The solutions to the relaxed problems are also added
to the solution pool and reused if possible.

16

Consider the subproblem for a demand decomposition c ∈ C and an area s ∈ S. In the relaxed
subproblem, we first consider only one demand pattern k̂, and all constraints of demand patterns
K\
{
k̂
}

are removed. Once the optimal solution for the relaxed subproblem is found, we determine

for each of the remaining demand patterns k ∈ K \
{
k̂
}

separately whether the solution is feasible
or not, i.e., whether all aircraft contained in parking pattern p (c, s, k) can be parked at contact
gates in area s given the positions of and equipment installed at the gates in the solution. If we
fail to show that the solution is feasible for one demand pattern k̃, the constraints associated with
demand pattern k̃ are added to the relaxed problem and the next iteration is started by solving
the relaxed problem again.

The behavior of the algorithm can be influenced by the sequence in which demand patterns
are considered. We first sort the parking patterns Pcs by decreasing values of rAp(c,s,k), i.e., by
decreasing number of aircraft of the largest class. When two parking patterns have equal values of
rAp(c,s,k), we sort them by decreasing number of aircraft of the second largest aircraft class A− 1,
etc. The demand pattern we consider first in the subproblem is determined by the value of k of the
first parking pattern in the resulting list, i.e., we select the demand pattern where the number of
aircraft belonging to the largest class that occurs in Pcs is the highest. This ensures that already
in the first iteration enough gates are equipped for the aircraft of that class.

Definition 4 (Bottom-up and top-down strategies). We introduce two alternative strategies
defining the sequence in which the remaining demand patterns are checked for feasibility.

• Top-down: We consider the demand patterns in the same order in which their associated
parking patterns p (c, s, k) appear in the sorted list.

• Bottom-up: We check the demand patterns in the opposite order. That is, we begin with
the demand pattern whose associated parking pattern p (c, s, k) accommodates the smallest
number of large aircraft. Typically, this parking pattern has the highest total number of
aircraft, which is the motivation for first examining the demand pattern associated with this
parking pattern.

Example 3. Consider a situation where K = 3, A = 2, p (c, s, 1) = (6, 0), p (c, s, 2) = (4, 1), and
p (c, s, 3) = (2, 2) for a given demand decomposition c ∈ C and area s ∈ S. We select demand
pattern 3 with parking pattern (2, 2) in the first iteration, which ensures that two gates for class 2

aircraft are built in the solution of the relaxed subproblem in the first iteration. The solution may
also be feasible for the remainig demand patterns 1 and 2, as gates are downward compatible and
the MARS mode can be used. To verify that the solution is indeed feasible for demand patterns 1

and 2 without violating any Safety constraints (1j), we need to perform a feasibility check for both
demand patterns individually. If we apply the bottom-up strategy, we first check demand pattern
1 with parking pattern (6, 0). In contrast, following the top-down strategy we begin with demand
pattern 2 associated with parking pattern (4, 1).

17

Checking for feasibility To determine if a solution of the relaxed subproblem is feasible for
a demand pattern not considered in the relaxation, we use an adapted version of the network
approach presented in Section 5.3. Let v̂ga be the value of the variable vga in the current solution
of the relaxed problem, and let k be the demand pattern for which the solution is checked. Before
we create paths through the network, we delete all nodes representing combinations of lead-in lines
and aircraft classes for which no feasible gate g ∈ Gs : Flg = 1, v̂ga = 1 exists. Again, we use an
iterative process in which paths are constructed, checked for reasonableness, and pruned if possible.
Beyond the pruning rules defined in Section 5.3, a path is truncated at node i if it meets any of
the following conditions.

Lemma 3 (Paths and parking patterns). A path π can be pruned if σ(i)aπ > rap(c,s,k) ∃a ∈ A.

If the number of class a ∈ A aircraft parked in path π leading from the source node to node i σ(i)aπ

is greater than the number of class a aircraft contained in parking pattern p (c, s, k), σ(sink)
a′π must

be smaller than ra′p(c,s,k) for another aircraft class a′ ∈ A \ {a}, because parking pattern p (c, s, k)

is efficient according to Definition 2. Hence, path π is not suitable to show that the solution is
feasible for demand pattern k. �

In addition, we prune a path if it violates Constraints (E.1d), (E.1f), or (E.1h). That is, (i) each
lead-in line that is used repeatedly for different demand patterns has to be assigned to the same
gate for all demand patterns, (ii) aircraft can only be parked at lead-in lines which are assigned
to gates equipped to handle aircraft of the respective class, and (iii) a gate can simultaneously
accommodate at most one aircraft belonging to Alarge or two aircraft belonging to Asmall. The
heuristic procedure we employ to check compliance of a path with Constraints (E.1d), (E.1f), and
(E.1h) is provided in Appendix H.

Monitoring the upper bound Each time we have solved a (relaxed) subproblem for a demand
decomposition c ∈ C, we check whether z∗2c can still be smaller than the current value of UB
given the solution(s) found so far. If not, the solution process for demand decomposition c can be
stopped, and c can be removed from C. As we have shown in Section 5.4, it may still be possible to
update LBc̃ for other demand decompositions c̃ ∈ C \ {c} based on the solutions determined until
abortion, which may also lead to their removal from C.

Consistency of demand decompositions In the bounding algorithm, the set of subproblems
to be solved next is found by selecting the demand decomposition from C that has the smallest LBc

value, ensuring that in each iteration the demand decomposition with the best potential to lead to
a new best solution is explored. However, due to the large number of demand decompositions, we
often observe several with the same LBc values. We then sort the affected demand decompositions
according to what we call the consistency criterion.

Definition 5 (Consistency). Let ζcak denote the number of aircraft belonging to classes {a, . . . , A}
that are parked at all areas for demand pattern k ∈ K when aircraft are assigned to areas according

18

to demand decomposition c ∈ C, i.e., ζcak =
∑
s∈S

∑
a′∈{a,...,A}

ra′p(c,s,k). We call demand decomposition

c consistent if there is no area s ∈ S for which
∑

a′∈{a,...,A}
ra′p(c,s,k1) <

∑
a′∈{a,...,A}

ra′p(c,s,k2) holds for

any aircraft class a ∈ Alarge and two demand patterns k1, k2 ∈ K : k1 6= k2, given that ζcak1 ≥ ζcak2 .
A demand decomposition thus is consistent if large aircraft are repeatedly assigned to the same
areas for different demand patterns, rather than being assigned to different areas. According to
the consistency criterion, preference should be given to consistent demand decompositions over
non-consistent demand decompositions with same LBc value.

Example 4. Consider a greenfield situation with A = 2, where a = 1 and a = 2 represent classes
of small and large aircraft, respectively. Assume K = 2, with the demand patterns given as Dak =

(10, 1) and (8, 2), and assume there are S = 2 areas. Furthermore, consider two distinct demand

decompositions c1 =

(
(3, 1) (3, 1)

(6, 0) (4, 1)

)
and c2 =

(
(3, 1) (5, 0)

(6, 0) (2, 2)

)
. According to Algorithm F.1,

LBc1 = LBc2 . However, c1 is a consistent demand decomposition, whereas c2 is not, and hence,
demand decomposition c1 is considered first in the bounding algorithm following the consistency
criterion.

We provide the algorithm we utilize to determine whether a demand decomposition is consistent
or not in Appendix G.

6 Computational Experiments

In the following, we examine the performance of our approach and analyze the solutions of individual
instances. In Section 6.1, we describe the instances we used in our experiments. Section 6.2
compares the performance of our approach to CPLEX solving Model (1a)-(1p) directly, and in
Section 6.3, we investigate the impact of the acceleration techniques introduced in Section 5.5.
Finally, we discuss the optimal solutions for individual instances in detail in Section 6.4. All
experiments were performed on a computer equipped with an Intel Xeon E3-1225 v3 @3.20GHz
processor and 12GB of working memory. The implementation was done in Java and CPLEX version
20.1.0 was used.

6.1 Instances

All instances are based on data from Munich Airport Terminal 1. With 47.9 million passengers in
2019, Munich Airport is the second largest airport in Germany (Munich Airport 2020). Before the
crisis caused by the Corona virus in 2020, 101 airlines were active at Munich Airport, connecting
the airport to 254 destinations in 75 countries. Transfer passengers accounted for 38% of total
passenger traffic in 2019, so Munich Airport is considered a hub airport. The airport has two
terminals, Terminal 1 being the smaller of the two providing about a third of the airport’s total
capacity. The terminal is currently being renovated and extended by a new section. Figure 4 shows
the apron layout for Terminal 1, with the new extension highlighted in red.

19

Figure 4: Terminal layout of Munich Airport and extension of Terminal 1 (Source: Munich Airport)

As part of the expansion and reconstruction activities, the positions of gates and lead-in lines
have to be determined for the new section of the terminal, and changes may also be made in existing
sections of Terminal 1. We consider three planning scenarios, resulting in three separate sets of
instances:

• Greenfield: Existing gates and lead-in lines are not considered.

• Soft brownfield: Existing gates and lead-in lines south of the extension are considered. Ex-
isting gates cannot be changed, but additional lead-in lines and gates can be added to the
layout of these sections.

• True brownfield: In sections south of the extension, the gate layout remains unchanged, i.e.,
only existing gates and lead-in lines can be used.

As demand patterns are defined for the terminal building as a whole, we solve the AGLP for the
entire terminal, including the sections south of the extension regardless of the planning scenario.
To determine the sets of lead-in lines L and gates G for all instances, as well as the values of the
parameters Cal, Elmab, Flg, and Hga, which determine the relationships among the gates and lead-
in lines, we applied the procedure described in Section 3 and validated the results with planning
experts from Munich Airport. We employed satellite images as well as floor plan drawings provided
by Munich Airport to determine the relevant coordinates of the terminal building and surrounding
taxiways. In all brownfield instances, 11 gates and 18 lead-in lines that already exist south of
the extension were added to sets G and L, respectively, based on their coordinates. Furthermore,

20

all other gates and lead-in lines south of the new extension were removed from sets G and L in
the true brownfield instances. To investigate the computational performance of our approach,
we created instances of different complexity for each planning scenario by varying the distance
between adjacent starting points ∆ as well as the rotation angle κ between the lead-in lines that
share the same starting point, where ∆ ∈ {10m, 7.5m, 5m, 2.5m} and κ ∈ {90°, 45°, 30°, 22.5°, 15°}.
We ensured that 90◦ is an integer multiple of each value of κ, since we concluded from the exchange
with Munich Airport that lead-in lines perpendicular to the terminal facade are the easiest to
operate in practice. However, the use of non-perpendicular lead-in lines may still considerably
improve z∗1 , as they may allow accommodation of additional aircraft in corners or at the ends of
the terminal building. We visualize sets G and L for ∆ = 5m and κ = 22.5◦ in Appendix I for each
planning scenario. In summary, we created instances for three scenarios, four values of ∆, and five
values of κ, resulting in 3 · 4 · 5 = 60 instances in total.

The smaller the values of ∆ and κ, the more flexibly aircraft can be parked on the apron,
and the better solutions we expect for Objective Function (1a). Better solutions for Objective
Function (1a) might suggest worse solutions for Objective Function (1b), as accomodating more
aircraft requires more gates. However, the smaller the values of ∆ and κ, the more precisely gates
can be placed, potentially reducing the number of gates needed to serve a given number of aircraft
simultaneously.

In all instances, the set of aircraft classes A corresponds to the classification introduced in Table
1, and hence Asmall = {1, 2, 3} and Alarge = {4, 5, 6}. Based on the interviews with experts from
Munich Airport, we set Cal to 1 for all a ∈ A and l ∈ L. Furthermore, Flg equals 1 if the path
between gate g and lead-in line l is unobstructed, and gate g is located at a maximum distance of
40.5 meters to the left of lead-in line l from the point of view of the parked aircraft. Finally, the
values of Elmab were determined as stated in Section 3.

Demand patterns k ∈ K and associated traffic volumes Dak were obtained from the flightplan
forecast of Munich Airport for the year 2030. We identified five demand patterns for Terminal 1,
which are given in Table 2.

Table 2: Values of Dak derived from the flightplan forecast for the year 2030

k

a 1 2 3 4 5

3 39 31 29 25 23
5 0 2 3 5 6
6 0 0 0 1 1

Aircraft of classes {1, 2, 4} are rarely seen at Munich Airport and are therefore not included in
Table 2.

Finally, the weights Wak for Objective Function (1a) are calculated as follows: We assume
that all demand patterns given in Table 2 have equal likelihood, and hence the values of Wak are

21

independent of k. In contrast, larger aircraft are associated with larger weights. Thus, for each
a ∈ A and k ∈ K, we set Wak to 0.2 · a2.

6.2 Computational performance compared to CPLEX

To evaluate the performance of our approach, we applied it to all soft brownfield instances. We
selected the soft brownfield scenario, because the sets G and L are the largest for given values
of ∆ and κ compared to the greenfield or true brownfield counterparts. We used all acceleration
techniques introduced in Section 5.5 and applied the top-down strategy. As a benchmark, we solved
Model (1a)-(1p) using CPLEX, with a time limit of 24 hours per objective function. In Table 3, we
provide for each instance the resulting objective function values, optimality gaps, and runtimes for
both CPLEX and our decomposition approach (DA). Furthermore, we provide relevant performance
indicators for our approach, where Ccon denotes the number of consistent demand decompositions
of an instance; Cexa and SPexa represent the number of demand decompositions and subproblems,
respectively, examined in the bounding algorithm; and K̄SP gives the average number of demand
patterns that had to be included in the relaxed subproblems until either feasibility of the solution
for the remaining demand patterns was proven or the optimization process was aborted.

Our results demonstrate that Model (1a)-(1p) cannot be solved to optimality by CPLEX for
small values of ∆ and κ within a reasonable amount of time. For five instances, z∗1 was not found
within 24 hours. Furthermore, for two instances z∗1 was found but not proven to be optimal. Only
for 11 of the 15 instances, for which z∗1 could be determined, could z∗2 also be found within the
time limit. Again, for two of these 11 instances, z∗2 was found but not proven to be optimal. In
summary, CPLEX could solve only 11 of 20 instances to optimality, thereby proving optimality for
only nine instances. In particular, no instance with κ = 15◦ could be solved to optimality, and for
∆ ∈ {5m, 2.5m} only the instances with κ = 90◦ could be solved to optimality with no remaining
optimality gap.

In contrast, with the decomposition approach we can solve 18 of 20 instances to optimality
within 24 hours, and we find a feasible solution for one additional instance with an optimality gap
of 2.63%. Our approach finds z∗1 for all instances within less than three hours. Averaged over
all instances where z∗1 was found and proven to be optimal by CPLEX within the time limit, our
approach reduces the runtime per instance for Objective Function (1a) by 84.14%. As for Objective
Function (1b), the decomposition approach reduces the average computation time per instance by
84.06% compared to CPLEX. Here, we only consider the instances for which both CPLEX and our
algorithm found z∗1 and z∗2 and proved optimality within the time limit. Averaged over the same
instances, our approach reduces the total computation time per instance, i.e., the time needed to
solve both objective functions to optimality, by 82.70%.

The number of demand decompositions found varies between 24 and 2, 750. In comparison, the
number of demand decompositions examined in the bounding algorithm is significantly smaller. For
ten instances, only two demand decompositions need to be examined in the bounding algorithm
until it is proven that the optimal solution has been found. The maximum number of demand

22

Table 3: Computational results for soft brownfield instances

Instance Objectives Runtimes [min] Info on DA

Objective (1a) Objective (1b) Objective (1a) Objective (1b)

Nr. ∆ [m] κ [°] G L CPLEX* DA CPLEX* DA* CPLEX DA CPLEX DA C Ccon Cexa SPexa K̄SP

1 10 90 136 119 61 61 34 34 0 0 0 0 2625 69 4 6 1.86
2 45 235 56 56 35 35 0 0 1 0 798 36 4 6 1.86
3 30 297 41 41 43 [12] 43 0 0 > 1440 0 630 20 2 4 2
4 22.5 418 36 36 37 37 7 0 36 1 416 48 4 6 1.5
5 15 613 31 31 − 39 139 2 > 1440 2 396 16 2 5 1.4
6 7.5 90 178 154 77 77 34 34 0 0 3 1 840 80 6 12 1.5
7 45 310 67 67 34 34 3 0 65 0 2750 112 2 7 1.14
8 30 392 50 50 36 36 3 0 14 1 80 18 4 5 1.57
9 22.5 556 40 40 40 40 504 1 12 1 198 24 2 4 1
10 15 815 41 [43] 41 − 36 > 1440 5 > 1440 7 384 48 2 4 1.25
11 5.0 90 260 222 56 56 35 35 0 0 2 0 315 18 2 4 1.5
12 45 454 50 50 − 39 82 1 > 1440 1 630 20 2 3 1.5
13 30 578 38 38 37 [1] 37 787 2 > 1440 4 980 36 8 8 1.2
14 22.5 823 29 [50] 29 − 37 > 1440 5 > 1440 189 1400 48 3 5 1.5
15 15 1210 61 [91] 29 − 38 > 1440 17 > 1440 334 770 30 2 4 1.75
16 2.5 90 507 428 50 50 38 38 2 1 138 2 216 42 4 7 1.43
17 45 891 47 [77] 38 − 41 > 1440 5 > 1440 511 24 6 2 4 2
18 30 1139 246 [99] 32 14 40 > 1440 14 15 313 504 63 6 8 1.38
19 22.5 1626 300 [100] 25 14 39 [3] > 1440 25 32 > 1440 96 12 ≥ 2 ≥ 5 1.2

20 15 2400 360 [100] 20 14 ≥ 38** > 1440 172 11 > 1440 132 9 ≥ 1 ≥ 3 −

av. 270 684 87 43 − 37.5 581 12 652 212 709 37.75 3.2 5.5 1.48

* Values in parentheses indicate optimality gaps in percent
** Lower bound of first demand decomposition examined in the bounding algorithm

decompositions examined across all instances is eight, highlighting the efficiency of the bounding
algorithm. The number of subproblems examined using CPLEX is also low, ranging between three
and 12. The number of independent areas found is four for instances 6 and 7, and three for all other
instances. However, we have no indication that the number of independent areas has an impact on
computational performance.

The objective function values meet our expectations. For a given value of κ, z∗1 improves when
∆ is reduced from 10m to 5m or from 5m to 2.5m. This is inevitable, because instances with
∆ = 2.5m include all lead-in lines and gates of instances with ∆ = 5m, and instances with ∆ = 5m
include all lead-in lines and gates of instances with ∆ = 10m. Instances with ∆ = 7.5m do not fit
into this scheme, which is why the z∗1 values of these instances can be and in fact are worse than
those of the instances with ∆ = 10m. Similarly, smaller values of κ generally yield better solutions
with respect to Objective Function (1a) for a given value of ∆. Regarding Objective Function (1b),
we do not see any systematic impact of the values of ∆ and κ on z∗2 . Nevertheless, the range of
solutions with values between 34 and 43 indicates that the choice of ∆ and κ exerts considerable
influence on z∗2 .

6.3 Effectiveness of acceleration techniques

We introduced multiple acceleration techniques in Section 5.5. In the following, we examine the
impact of each of these acceleration techniques on the performance of our approach. For this
purpose, we solved all soft brownfield instances from Table 3 multiple times, each time removing
or exchanging exactly one of the acceleration techniques.

For each configuration of our approach with respect to acceleration techniques, Table 4 depicts
the number of instances (out of 20) for which a feasible solution was found within the time limit

23

(nfea) and the number of instances that were solved to optimality within the time limit (nopt).
Furthermore, averaged over all instances counted in nopt, Table 4 provides the percental runtime
increase per instance (∆+

time) compared to the runtimes obtained in Table 3, where all acceleration
techniques and the top-down strategy were used. As the acceleration techniques have no impact
on the part of our approach dedicated to finding the best solution for Objective Function (1a), we
concentrate on the computation times for Objective Function (1b). If not stated differently, the
top-down strategy was applied to sort demand patterns.

Table 4: Performance results when individual acceleration techniques are deactivated

Description nfea nopt ∆+
time [%]

No solution pool 19 18 9.81
No relaxation of subproblems 15 14 859.21
Bottom-up strategy 19 18 58.17
No monitoring of UB 19 17 197.61
Consistency not considered 18 18 22.21

Removing any acceleration technique leads to a degradation of the performance of our algorithm.
Most importantly, the average runtime per instance increases by more than 800% when subproblems
are solved directly without relaxations, and fewer instances can be solved in that case. When
the optimization process of the subproblems associated with demand decomposition c ∈ C is not
terminated as soon as it becomes apparent that z∗2c cannot be smaller than the current upper
bound UB, we observe that the average runtime per instance increases by almost 200%. The
remaining acceleration techniques also improve the performance of our algorithm, with average
runtime reductions per instance and acceleration technique ranging between 10% and 60%.

6.4 Analysis of optimal layouts

We now address the resulting gate layout for Munich Airport Terminal 1. We have solved the
greenfield, soft brownfield, and true brownfield instances for ∆ = 5m and κ = 22.5◦, and we
compare the optimal layouts in the following. For each planning scenario, Figure 5 shows which
gates and lead-in lines are used in the optimal solution, which lead-in lines are assigned to which
gates, and the safety envelope of the aircraft parked at each lead-in line, indicating the class of
each parked aircraft. The terminal facade and other airport structures are shown by red lines, and
taxiways are illustrated by yellow lines. Existing gates are represented by gray circles in front of the
terminal facade, whereas new gates are colored cyan. Similarly, existing lead-in lines are depicted in
purple, while new lead-in lines are colored green. Black lines connect lead-in lines to the gates they
are assigned to. Finally, aircraft safety envelopes are displayed as blue polygons. In order not to
overload the figures, they show only lead-in lines and aircraft safety envelopes for demand pattern
5. Which lead-in lines are used for the remaining demand patterns is illustrated in Appendix J.
Furthermore, for all planning scenarios, Table 5 provides the optimal values of Objective Functions

24

(1a) and (1b), the optimal values of Objective Function (1b) when already existing gates are not
considered, and the number of gates used to park aircraft across all demand patterns.

(a) Greenfield (b) Soft brownfield (c) True brownfield

Figure 5: Optimal solutions for different planning scenarios, demand pattern 5

Table 5: Performance data of optimal layouts for different planning scenarios

Planning scenario z∗1 z∗2 z∗2 without already existing gates Number of gates used

Greenfield 28.8 36 36 27
Soft brownfield 28.8 37 23 28
True brownfield 55.8 35 21 25

Compared to the true brownfield case, sets G and L contain significantly more gates and lead-in
lines in the greenfield and soft brownfield scenarios, which increases planning flexibility. Conse-
quently, the number of aircraft that cannot be parked at contact gates weighted by aircraft class
and demand pattern (z∗1) is substantially lower in the greenfield and soft brownfield scenarios than
in the true brownfield scenario. However, there is no difference in that value between the greenfield
and soft brownfield scenarios, suggesting that the existing gates and lead-in lines that distinguish
the two scenarios from each other do not lead to an increase in parking capacity in our case.

The construction effort (z∗2) is similar in all scenarios when we assume that all gates need to be
newly built, regardless of whether they already exist or not. In contrast, when we take into account

25

that already existing gates do not need to be newly built, the remaining construction effort is the
highest in the greenfield scenario.

Our results indicate that the substantial decrease in the number of aircraft that cannot be
parked at contact gates weighted by aircraft class and demand pattern in the soft brownfield
scenario compared to the true brownfield scenario does not lead to an equally significant increase
in construction effort for gates. Instead, the increase in construction effort is comparatively small,
also when taking the already existing gates into account. Thus, by allowing changes to the existing
layout in the southern part of the terminal, a significant improvement in parking capacity can be
achieved, while the actual changes to the existing gate layout remain relatively small.

While the number of gates used across all demand patterns is lower in the greenfield scenario
than in the soft brownfield case, the actual construction effort is higher in the greenfield scenario.
This is consistent with our previous finding that in the soft brownfield scenario, although individual
changes are made to the existing layout, the existing gates are utilized well. In contrast, few existing
lead-in lines are used in the soft brownfield scenario, because we do not penalize the use of new
lead-in lines in our model.

Figure 5 shows that mainly orthogonal lead-in lines are used in the optimal layouts regardless
of the scenario, without explicitely incentivizing the use of orthogonal lead-in lines in our model.
Non-orthogonal lead-in lines are only used in three cases: (i) At corners of the terminal building
where no orthogonal lead-in lines can be used, (ii) when specific geometric situations favor the use of
non-orthogonal lead-in lines, and (iii) when there is slack space that does not suffice to park another
aircraft, even if all lead-in lines were orthogonal. However, in situations (i) and (ii), the use of non-
orthogonal lead-in lines enables parking more aircraft simultaneously, so non-orthogonal lead-in
lines should always be considered in the planning. As an example for (i), consider the junction of
the new extension to the existing terminal building, where large aircraft are always parked at non-
orthogonal lead-in lines in the corners to fill the corner space as efficiently as possible. Regarding
(ii), two class 3 aircraft are parked at non-orthogonal lead-in lines at the southern facade of the
new extension building in the true brownfield scenario. Given the parking positions of the larger
aircraft to the left and right of this spot, only two class 3 aircraft could be parked in this section
instead of three if only perpendicular lead-in lines were used. An example for (iii) can be found at
the northern end of the terminal in the true brownfield scenario, where the two last aircraft could
also be parked at orthogonal lead-in lines.

Finally, we find that the optimal layouts in Figure 5 and Appendix J are quite distinct from
each other: Depending on the scenario, large aircraft are parked in different areas of the terminal
and few lead-in lines can be found, which are used in all scenarios for a given demand pattern.
Nevertheless, the solutions for the greenfield and soft brownfield scenarios are very similar in terms
of our objective functions, which leads us to suspect that several solutions exist per scenario that
are equivalent with respect to our objective functions. In that case, it might be useful to identify
all these equivalent solutions in order to be able to provide the planner with several alternatives.

26

7 Conclusion

We introduced the Airport Gate Layout Problem (AGLP) and presented a mixed-integer model
formulation for the problem that can be applied to both greenfield and brownfield instances. To
solve the problem efficiently, we presented a decomposition framework, which features a custom
bounding algorithm as well as problem-specific acceleration techniques. In our computational
experiments, we demonstrated the superior performance of our approach compared to CPLEX and
investigated the impact of each acceleration technique on runtimes. In addition, we analyzed and
compared particular layouts for Munich Airport Terminal 1 in different planning scenarios.

Solving the AGLP provides valuable decision support to planning experts. First, the optimal
layout shows how to make the best use of the available space, especially for complex terminal
geometries. Second, the optimal solution can be used as a benchmark for layout alternatives
created by planning experts. Finally, when a new terminal is to be built and the layout of the
building has not yet been determined, solving the AGLP can be used to evaluate different terminal
layouts in terms of their potential to handle as many of the expected aircraft as possible at contact
gates. Our decomposition approach considerably reduces the time needed to solve the AGLP for
a given instance, which allows us to solve instances that are intractable for CPLEX. Thus, we can
solve the AGLP with increased planning granularity for a particular terminal building, resulting in
a better solution.

To conclude, we outline some possibilities for future research on the AGLP. First, we have not
considered the affiliation of aircraft to airlines so far. Airlines that operate a base at an airport
tend to have their own terminal or terminal areas where all flights of these airlines are handled.
Of course, these terminal areas do not necessarily correspond to the terminal areas we define in
our solution approach. However, different airlines are associated with different fleet compositions.
Therefore, if the affiliation of aircraft to airlines is to be taken into account, the parking positions in
each terminal area must reflect the fleet mix of the particular airline. Second, to reduce operational
complexity on the apron, the AGLP may be extended by another objective function to minimize
the number of lead-in lines, especially those that are non-orthogonal to the terminal facade, used
across all demand patterns. Third, it might be useful for decision makers to receive not only one
solution, but several alternative layouts that are equivalent with respect to the given objectives
and constraints, provided there is more than one optimal solution. While different layouts may be
equally optimal from the perspective of our model, one alternative layout might be easier to realize
than others, especially in brownfield situations. Finally, future work should be concerned with
further shortening the runtimes of the AGLP. Ideally, planners will be equipped with an interactive
optimization tool in which the optimal layout can be manually adjusted and then re-optimized. In
particular, approaches that reduce the runtime of the relaxed subproblems could be promising.

27

Acknowledgments

We would like to thank Munich Airport, especially Carolin Aust and Leander von Preysing, for
the constructive exchange throughout the research project. We would also like to thank Alexander
Druska, who initiated the research on the topic with his master’s thesis, and Dr. Stephen Starck
for his support in refining the language of the paper.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial,
or not-for-profit sectors.

Declaration of Interest

None.

28

References

Airbus (2022) Airport operations - autocad 3d view aircraft drawings. URL https://web.
archive.org/web/20211027010324/https:/www.airbus.com/aircraft/support-services/
airport-operations-and-technical-data/autocad-3-view-aircraft-drawings.html.

Airport Improvement Magazine (2010) "like new" boarding bridges return to ser-
vice at daytona beach. URL https://airportimprovement.com/article/
new-boarding-bridges-return-service-daytona-beach.

Anjos MF, Vieira MV (2017) Mathematical optimization approaches for facility layout problems: The state-
of-the-art and future research directions. European Journal of Operational Research 261(1):1–16.

Bandara SJ, Wirasinghe SC (1989) Airport gate position estimation under uncertainty. Transportation Re-
search Record Journal of the Transportation Research Board 1199:41–48.

Briskorn D, Dienstknecht M (2019) Mixed-integer programming models for tower crane selection and posi-
tioning with respect to mutual interference. European Journal of Operational Research 273(1):160–174.

Caves R (1994) A search for more airport apron capacity. Journal of Air Transport Management 1(2):109–120.

Cheng CH, Ho SC, Kwan CL (2012) The use of meta-heuristics for airport gate assignment. Expert Systems
with Applications 39(16):12430–12437.

Daş GS, Gzara F, Stützle T (2020) A review on airport gate assignment problems: Single versus multi
objective approaches. Omega 92:102–146.

Dorndorf U, Drexl A, Nikulin Y, Pesch E (2007) Flight gate scheduling: State-of-the-art and recent develop-
ments. Omega 35(3):326–334.

Dorndorf U, Jaehn F, Pesch E (2008) Modelling robust flight-gate scheduling as a clique partitioning problem.
Transportation Science 42(3):292–301.

Dorndorf U, Jaehn F, Pesch E (2012) Flight gate scheduling with respect to a reference schedule. Annals of
Operations Research 194(1):177–187.

Dorndorf U, Jaehn F, Pesch E (2017) Flight gate assignment and recovery strategies with stochastic arrival
and departure times. OR Spectrum 39(1):65–93.

Drira A, Pierreval H, Hajri-Gabouj S (2007) Facility layout problems: A survey. Annual Reviews in Control
31(2):255–267.

European Aviation Safety Agency (EASA) (2017) Certification specifications and guidance material
for aerodromes design cs-adr-dsn. URL https://www.faa.gov/documentLibrary/media/Advisory_
Circular/150-5300-13A-chg1-interactive-201907.pdf.

Federal Aviation Administration (FAA) (2012) Ac 150/5300-13a - airport design.

Guépet J, Acuna-Agost R, Briant O, Gayon JP (2015) Exact and heuristic approaches to the airport stand
allocation problem. European Journal of Operational Research 246(2):597–608.

Hagspihl T, Kolisch R, Ruf C, Schiffels S (2022) Dynamic gate configurations at airports: A network opti-
mization approach. European Journal of Operational Research 301(3):1133–1148.

Hassounah MI, Steuart GN (1993) Demand for aircraft gates. Transportation Research Record
1423(1423):26–33.

Huang C, Wong CK, Tam CM (2011) Optimization of tower crane and material supply locations in a high-rise
building site by mixed-integer linear programming. Automation in Construction 20(5):571–580.

29

https://web.archive.org/web/20211027010324/https:/www.airbus.com/aircraft/support-services/airport-operations-and-technical-data/autocad-3-view-aircraft-drawings.html
https://web.archive.org/web/20211027010324/https:/www.airbus.com/aircraft/support-services/airport-operations-and-technical-data/autocad-3-view-aircraft-drawings.html
https://web.archive.org/web/20211027010324/https:/www.airbus.com/aircraft/support-services/airport-operations-and-technical-data/autocad-3-view-aircraft-drawings.html
https://airportimprovement.com/article/new-boarding-bridges-return-service-daytona-beach
https://airportimprovement.com/article/new-boarding-bridges-return-service-daytona-beach
https://www.faa.gov/documentLibrary/media/Advisory_Circular/150-5300-13A-chg1-interactive-201907.pdf
https://www.faa.gov/documentLibrary/media/Advisory_Circular/150-5300-13A-chg1-interactive-201907.pdf

International Civil Aviation Organization (ICAO) (2018) Annex 14 to the convention on in-
ternational civil aviation: Aerodromes: Volume 1 aerodrome design and operations. URL
https://www.easa.europa.eu/sites/default/files/dfu/Annex%20to%20EDD%202017-021-R%
20-%20CS-ADR-DSN%20Issue%204_0.pdf.

Laporte G, Desrochers M, Nobert Y (1984) Two exact algorithms for the distance-constrained vehicle routing
problem. Networks 14(1):161–172.

Martins EQV (1984) On a multicriteria shortest path problem. European Journal of Operational Research
16(2):236–245.

Mirkovic B, Tosic V (2014) Airport apron capacity: estimation, representation, and flexibility. Journal of
Advanced Transportation 48(2):97–118.

Mirković B, Tošić V (2016) Apron capacity at hub airports-the impact of wave-system structure. Journal of
Advanced Transportation 50(7):1489–1505.

Mirković B, Tošić V (2017) The difference between hub and non-hub airports – an airside capacity perspective.
Journal of Air Transport Management 62:121–128.

Munich Airport (2020) Annual traffic report 2019. URL https://www.munich-airport.com/_b/
0000000000000008934656bb5e9eb677/annual-traffic-report-2019.pdf.

Narciso ME, Piera MA (2015) Robust gate assignment procedures from an airport management perspective.
Omega (50):82–95.

National Academies of Sciences, Engineering, and Medicine (NASEM) (2010) Airport Passenger Terminal
Planning and Design: Volume 1: Guidebook (Washington, DC: The National Academies Press).

Stephan K, Weidinger F, Boysen N (2021) Layout design of parking lots with mathematical programming.
Transportation Science 55(4):930–945.

Steuart GN (1974) Gate position requirements at metropolitan airports. Transportation Science 8(2):169–189.

Travel PR News (2019) Budapest airport installs brand new passenger boarding bridges. URL https://
travelprnews.com/budapest-airport-installs-brand-new-passenger-boarding-bridges-649599/
travel-press-release/2019/05/27/.

Tung Tung C, Lin Chew K (1992) A multicriteria pareto-optimal path algorithm. European Journal of
Operational Research 62(2):203–209.

Wirasinghe SC, Bandara SJ (1990) Airport gate position estimation for minimum total costs—approximate
closed form solution. Transportation Research Part B: Methodological 24(4):287–297.

30

https://www.easa.europa.eu/sites/default/files/dfu/Annex%20to%20EDD%202017-021-R%20-%20CS-ADR-DSN%20Issue%204_0.pdf
https://www.easa.europa.eu/sites/default/files/dfu/Annex%20to%20EDD%202017-021-R%20-%20CS-ADR-DSN%20Issue%204_0.pdf
https://www.munich-airport.com/_b/0000000000000008934656bb5e9eb677/annual-traffic-report-2019.pdf
https://www.munich-airport.com/_b/0000000000000008934656bb5e9eb677/annual-traffic-report-2019.pdf
https://travelprnews.com/budapest-airport-installs-brand-new-passenger-boarding-bridges-649599/travel-press-release/2019/05/27/
https://travelprnews.com/budapest-airport-installs-brand-new-passenger-boarding-bridges-649599/travel-press-release/2019/05/27/
https://travelprnews.com/budapest-airport-installs-brand-new-passenger-boarding-bridges-649599/travel-press-release/2019/05/27/

Appendix A Notation

Table A.1: Notation for AGLP model (1a)-(1p)

Sets, parameters
A = {1, . . . , A} aircraft classes
L = {1, . . . , L} lead-in lines
G = {1, . . . , G} gates
K = {1, . . . ,K} demand patterns
Asmall subset of A, which includes the aircraft classes from which up to two

aircraft can be processed at one gate simultaneously
Alarge subset of A, which includes the aircraft classes from which only one

aircraft can be processed at one gate at one point in time
Cal 1, if an aircraft of class a ∈ A can be parked at lead-in-line l ∈ L; 0,

otherwise
Elmab 1, if aircraft of classes a ∈ A and b ∈ A cannot be parked simultaneously

at lead-in lines l ∈ L and m ∈ L \ {l}; 0, otherwise
Flg 1, if lead-in line l ∈ L can be assigned to gate g ∈ G; 0, otherwise
Hga 1, if aircraft of class a ∈ A could be parked at gate g ∈ G in the past; 0,

otherwise
Dak number of aircraft of class a ∈ A that need to be parked simultaneously

for demand pattern k ∈ K
Wak weighting factor for aircraft class a ∈ A and demand pattern k ∈ K
∆ distance between adjacent lead-in line starting points
κ rotation angle between the lead-in lines that share the same starting

point
Decision variables
yl ∈ {0, 1} 1, if lead-in line l ∈ L is used to park an aircraft for at least one demand

pattern; 0, otherwise
xglak ∈ {0, 1} 1, if lead-in line l ∈ L is assigned to gate g ∈ G and is used to park an

aircraft of class a ∈ A for demand pattern k ∈ K; 0, otherwise
ugl ∈ {0, 1} 1, if lead-in line l ∈ L is assigned to gate g ∈ G; 0, otherwise
qak ≥ 0 number of aircraft belonging to class a ∈ A that cannot be parked at any

contact gate for demand pattern k ∈ K
vga ∈ {0, 1} 1, if aircraft of class a ∈ A can be parked at gate g ∈ G; 0, otherwise

31

Table A.2: Notation for solution approach

Sets, parameters
S = {1, . . . , S} airport areas that are independent with respect to Constraints (1j)
C = {1, . . . , C} demand decompositions
Ck set of demand decompositions pretending that demand pattern k ∈ K is

the only demand pattern that exists
Ls subset of L containing all lead-in lines belonging to area s ∈ S
Gs subset of G containing all gates belonging to area s ∈ S
Ps set of efficient parking patterns associated with area s ∈ S
Pcs set of parking patterns p ∈ Ps contained in demand decomposition c ∈ C

for area s ∈ S
rap number of aircraft of class a ∈ A contained in parking pattern p ∈ Ps
p (c, s, k) parking pattern from Ps that is contained in demand decomposition

c ∈ C for area s ∈ S and demand pattern k ∈ K
π a path through the network created to find efficient parking patterns and

to check whether a solution to the relaxed subproblem is feasible for a
parking pattern

z∗1 , z∗2 optimal values of Objective Functions (1a) and (1b), respectively
z∗1k optimal value of Objective Function (1a) that can be reached for demand

pattern k ∈ K
z∗1c, z∗2c optimal values for Objective Functions (1a) and (1b) when aircraft are

assigned to areas according to demand decomposition c ∈ C
z∗2cs optimal value for Objective Function (1b) in area s ∈ S when aircraft are

assigned to areas according to demand decomposition c ∈ C
Variables
LBc lower bound for the value of Objective Function (1a) when aircraft are

assigned to areas according to demand decomposition c ∈ C
LBcs lower bound for the value of Objective Function (1a) in area s ∈ S when

aircraft are assigned to areas according to demand decomposition c ∈ C
UB upper bound for the value of Objective Function (1a)
σaπ number of class a ∈ A aircraft parked in path π

ωcsa minimum number of gates equipped for class a ∈ A aircraft required in
area s ∈ S to park all aircraft contained in Pcs

ψcsak number of class a ∈ A aircraft that can be parked at gates which are
equipped for aircraft of a larger class a′ > a in area s ∈ S for demand
pattern k ∈ K when aircraft are assigned to areas according to demand
decomposition c ∈ C

32

ζcak number of aircraft belonging to classes {a, . . . , A} that are parked at all
areas for demand pattern k ∈ K when aircraft are assigned to areas
according to demand decomposition c ∈ C

Appendix B Process to compute aircraft safety envelopes

To compute the safety envelope for each aircraft class, we first determine the dimensions of a so-
called critical design aircraft. We then compute the aircraft safety envelope based on the critical
design aircraft.

Critical design aircraft The critical design aircraft represents a fictitious aircraft type, which
in all respects has the maximum dimensions of all real aircraft types included in the respective
ARC letter. Thus, all real aircraft belonging to a class can be handled at a parking position if the
critical design aircraft corresponding to the class can be parked there.

To determine the dimensions of the critical design aircraft of a class, the following key figures
need to be known for each aircraft type belonging to that class: The width of the fuselage, the
wingspan, the width of the horizontal stabilizer, the linear positions of the wingbox, leading and
trailing edges of the wingtip, and the overall length of the aircraft. The critical design aircraft
of a class is initialized using the dimensions of the longest aircraft belonging to the class. Next,
the maximum wingspan, the maximum fuselage width, and the maximum width of the horizontal
stabilizer are identified from all aircraft belonging to the class and transferred to the critical design
aircraft. Finally, the critical design aircraft is compared to each aircraft type belonging to the class
and it is checked whether the outer shape of the respective aircraft is covered entirely by the outer
shape of the critical design aircraft. In case the outer shape of the critical design aircraft does not
entirely cover another aircraft of the class, its geometry is changed accordingly.

Aircraft safety envelopes We can now compute the safety envelope for the critical design
aircraft of each class. Figure B.1a shows the aircraft safety envelope without minimum safety
clearance for one aircraft.

The aircraft safety envelope as shown in Figure B.1a is defined by 6 pairs of points, where each
pair is located symmetrically to the aircraft center line. As the aircraft is accommodated at a
parking position, the aircraft center line equals the lead-in line of the parking position. Points (0,
1) are located at the nose of the aircraft, with a lateral distance of half the fuselage width (A) to
the lead-in line. Points (4, 5) and (6, 7) are located in front of (F) and behind (G) the wingtips,
where the lateral distance of each point from the lead-in line equals half the wingspan (C). The
position of points (2, 3) is chosen such that the distance to the nose of the aircraft (E) is maximized
while the edges (2, 4) and (3, 5) do not interfer with the engines or the wingbox of the aircraft.
Points (8, 9) are located at the tail of the aircraft (H), where the lateral distance to the lead-in line
equals the width of the horizontal stabilizer (B). Finally, the path to the taxiway is approximated

33

(a) Without safety clearance (b) With safety clearance

Figure B.1: Aircraft safety envelopes (Source of aircraft models: Airbus 2022)

using two additional points (10, 11). These points are positioned at the intersection of the lead-in
line and the taxiway (I), and the lateral distance between the points and the lead-in line equals
half the wingspan of the aircraft (C).

For our purpose, the aircraft safety envelope must be extended to include the minimum safety
clearances, see Figure B.1b, where the safety clearance is added to both coordinates of each point,
so that the points are shifted away from the aircraft.

34

Appendix C Collisions of aircraft safety envelopes

We consider two types of collisions, illustrated in Figure C.1. Figure C.1a shows the case where
the safety envelopes of two parked aircraft overlap. Figure C.1b demonstrates the case where the
safety envelopes of two aircraft parked adjacently do not overlap when both aircraft are in their
parking positions, but where the pushback of aircraft D would lead to an infringement of the safety
envelope of aircraft C.

(a) Collision when both aircraft are parked (b) Collision when one aircraft is moving

Figure C.1: Collisions of aircraft safety envelopes (Source of aircraft models: Airbus 2022)

35

Appendix D Merging Constraints (1j)

We use the following algorithm to merge constraints of type (1j).

Algorithm D.1 Algorithm to merge Constraints (1j)

1: for all k ∈ K do
2: Initialize matrix Ẽ with dimensions L, L, A, A, all entries 0
3: for all l ∈ L and a ∈ A do
4: Initialize Pla as the list of tuples (m, b) for which Elmab = 1
5: for all tuples (m, b) ∈ Pla do
6: if Ẽlmab = 1 then
7: Remove (m, b) from Pla

8: end if
9: end for

10: while Pla is not empty do
11: Initialize new constraint B as

∑
g∈G:Flg=1

xglak ≤ 1

12: Initialize P̂la as an empty list of tuples, add (l, a) to P̂la

13: for all tuples (m, b) in Pla do
14: if Enmcb = 1 for all tuples (n, c) in P̂la then
15: Add

∑
h∈G:Fmh=1

xhmbk to the left side of Constraint B

16: Ẽnmcb ← 1 for all tuples (n, c) in P̂la

17: Add (m, b) to P̂la

18: Remove (m, b) from Pla

19: end if
20: end for
21: Add Constraint B to the model
22: end while
23: end for
24: end for
25: Remove all Constraints (1j) from the model

Appendix E Subproblems

The subproblem for demand decomposition c ∈ C and area s ∈ S is defined as follows:

min z2cs =
∑
g∈Gs

∑
a∈A

vga (E.1a)

subject to∑
g∈Gs

∑
l∈Ls:Cal=1∩Flg=1

xglak = rap(c,s,k) ∀a ∈ A; k ∈ K (E.1b)

36

∑
g∈Gs:Flg=1

∑
a∈A:Cal=1

xglak ≤ yl ∀l ∈ Ls; k ∈ K (E.1c)

∑
g∈Gs:Flg=1

ugl = yl ∀l ∈ Ls (E.1d)

xglak ≤ zgl ∀g ∈ Gs; l ∈ Ls; a ∈ A; k ∈ K :

(E.1e)

Flg = 1;Cal = 1∑
l∈Ls:Flg=1

∑
a∈A:Cal=1

a · xglak ≤
∑
a∈A

vga ∀g ∈ Gs; k ∈ K (E.1f)

vga ≤ vgb ∀g ∈ Gs; a ∈ {2, . . . , A} ; (E.1g)

b = a− 1

∑
l∈Ls:Flg=1

 ∑
a∈Asmall:Cal=1

xglak +
∑

a∈Alarge:Cal=1

2 · xglak

 ≤ 2 ∀g ∈ Gs; k ∈ K (E.1h)

∑
g∈Gs:Flg=1

xglak +
∑

h∈Gs:Fmh=1

xhmbk ≤ 1 ∀l,m ∈ Ls; a, b ∈ A; k ∈ K : (E.1i)

Elmab = Cal = Cbm = 1; l < m

vga = Hga ∀g ∈ Gs; a ∈ A :
∑
â∈A

Hgâ > 0 (E.1j)

vga ∈ {0, 1} ∀g ∈ Gs; a ∈ A (E.1k)

xglak ∈ {0, 1} ∀g ∈ Gs; l ∈ Ls; a ∈ A; k ∈ K :

(E.1l)

Flg = 1;Cal = 1

yl ∈ {0, 1} ∀l ∈ Ls (E.1m)

ugl ∈ {0, 1} ∀g ∈ Gs; l ∈ Ls : Flg = 1 (E.1n)

In contrast to Model (1a)-(1o), Dak is substituted by parking patterns Pcs. The qak variables are
eliminated, because the optimal value of z1 has been determined already and all aircraft contained
in parking patterns Pcs have to be parked at contact gates. Demand constraints (1c) are changed to
Constraints (E.1b) accordingly. Sets G and L are replaced throughout the model by the area-specific
subsets Gs and Ls.

Appendix F Algorithm to compute lower bounds for demand de-
compositions

Let ωcsa ∈ N be the minimum number of gates equipped for class a ∈ A aircraft required in area
s ∈ S to park all aircraft contained in Pcs. Furthermore, let ψcsak ∈ N be the number of class
a ∈ A aircraft that can be parked at gates which are equipped for aircraft of class a′ > a in

37

area s ∈ S for demand pattern k ∈ K when aircraft are assigned to areas according to demand
decomposition c ∈ C. Then, Algorithm F.1 describes our procedure to calculate LBcs in detail.
First, we determine the minimum number of gates required for aircraft of the largest class A as
maxk∈K

{
rAp(c,s,k)

}
in line 6. Next, we consider the next smaller aircraft class A − 1. Here, for

each demand pattern k ∈ K, we first compute how many of the class A − 1 aircraft contained in
p (c, s, k) can be parked at the gates equipped for class A aircraft, but not occupied by a class A
aircraft for demand pattern k (lines 9 to 14). For the remaining aircraft, additional gates for class
A − 1 aircraft must be provided (line 15). We continue according to this scheme until all aircraft
classes have been considered. As soon as the aircraft class under consideration is no longer included
in Alarge but in Asmall, we assume that the MARS mode can always be used, i.e., that two aircraft
of class a ∈ Asmall can be parked simultaneously at gates which are equipped for aircraft of the
classes belonging to Alarge (line 12).

Algorithm F.1 Algorithm to determine the value of LBcs

1: Initialize LBcs, ωcsa, and ψcsak

2: for all aircraft classes a ∈ A (in descending order) do
3: ωcsa ← 0
4: for all demand patterns k ∈ K do
5: if a = A then
6: ωcsa ← max

{
ωcsa, rap(c,s,k)

}
7: else
8: if rap(c,s,k) > ωcsa then
9: if a ∈ Alarge \ {A} then

10: ψcsak ←
∑

a′∈A:a′>a

(
ωcsa′ − ra′p(c,s,k)

)
11: else if a ∈ Asmall then
12: ψcsak ←

∑
a′∈A:a′>a,a′∈Alarge

2 ·
(
ωcsa′ − ra′p(c,s,k)

)
13: +

∑
a′∈A:a′>a,a′∈Asmall

(
ωcsa′ − ra′p(c,s,k)

)
14: end if
15: ωcsa ←

(
rap(c,s,k) − ψcsak

)
16: end if
17: end if
18: end for
19: end for
20: LBcs ←

∑
a∈A

a · ωcsa

21: return LBcs

In brownfield settings, we compare the results from Algorithm F.1 with the already existing
gates and adjust gate quantities ωcsa accordingly if necessary. Let parameter Ωsa ∈ N denote the
number of existing gates in subarea s ∈ S that are equipped to handle aircraft of class a ∈ A.
Algorithm F.2 shows how we match the results from Algorithm F.1 with Ωsa and adapt the values

38

of ωcsa accordingly if necessary.

Algorithm F.2 Algorithm to determine the value of LBcs in brownfield scenarios

1: Initialize Ωsa and integer counter variable f
2: Perform Alorithm F.1, lines 1 to 19
3: for all aircraft classes a ∈ A do
4: Ωsa ←

∑
g∈Gs

Hga

5: end for
6: for all aircraft classes a ∈ A (in descending order) do
7: while Ωsa > ωcsa do
8: ωcsa ← (ωcsa + 1)
9: if a ∈ Asmall : a > 1 then

10: for all a′ ∈ Asmall : a′ < a (in descending order) do
11: if ωcsa′ > 0 then
12: ωcsa′ ← (ωcsa′ − 1)
13: break
14: end if
15: end for
16: else if a ∈ Alarge then
17: f ← 2
18: for all a′ ∈ Alarge : a′ < a (in descending order) do
19: if ωcsa′ > 0 then
20: ωcsa′ ← (ωcsa′ − 1)
21: f ← 0
22: break
23: end if
24: end for
25: for all a′ ∈ Asmall : a′ < a (in descending order) do
26: if f > 0 and ωcsa′ > 1 then
27: ωcsa′ ← (ωcsa′ − 2)
28: f ← 0
29: break
30: else if f > 0 and ωcsa′ > 0 then
31: ωcsa′ ← (ωcsa′ − 1)
32: f ← (f − 1)
33: end if
34: end for
35: end if
36: end while
37: end for
38: LBcs ←

∑
a∈A

a · ωcsa

39: return LBcs

According to Constraints (1p), already existing gates must not be changed in a brownfield
scenario. Hence, ωcsa cannot be smaller than Ωsa in any area s ∈ S and any aircraft class a ∈ A. If

39

ωcsa has to be increased for that reason and a > 1, it follows from the downward compatibility of
gates that ωcsâ can be reduced for a smaller aircraft class â < a. Again, we explicitly consider the
MARS mode. That is, if ωcsa is increased by 1 for an aircraft class a ∈ Alarge, ωcsâ for an aircraft
class â ∈ Asmall can be reduced by 2.

Appendix G Algorithm to compute consistency of a demand de-
composition

Let na′sk ∈ N be defined as the aggregated number of aircraft belonging to classes a′, . . . , A ∈ A
that must be parked at area s ∈ S for demand pattern k ∈ K when aircraft are assigned to areas
according to demand decomposition c ∈ C. The procedure we employ to determine whether a
demand decomposition is consistent or not is provided in Algorithm G.1.

Algorithm G.1 Algorithm to determine whether a demand decomposition is consistent or not

1: Initialize nask
2: for all aircraft classes amin ∈ Alarge do
3: namin

sk ←
∑

a∈Alarge:a≥amin

rap(c,s,k)

4: for all demand patterns k1 ∈ K do
5: for all demand patterns k2 ∈ K : k2 > k1 do
6: if

∑
a∈Alarge:a≥amin

Dak1 ≤
∑

a∈Alarge:a≥amin

Dak2 then

7: if namin
sk1

> namin
sk2

then
8: return false . demand decomposition is not consistent
9: end if

10: end if
11: end for
12: end for
13: end for
14: return true . demand decomposition is consistent

40

Appendix H Algorithm to check feasibility of a solution from a
relaxed subproblem

Let ŷl and ûgl denote the values of variables yl and ugl in the current solution of the relaxed
subproblem, respectively. Furthermore, let β̄ga ∈ N denote the number of class a ∈ A aircraft that
are handled at gate g ∈ Gs for demand pattern k̄ simultaneously. Then, we check compliance of a
path π with Constraints (E.1d), (E.1f), and (E.1h) as shown in Algorithm H.1.

Algorithm H.1 Heuristic algorithm to check compliance of a path with Constraints (E.1d), (E.1f),
and (E.1h)

1: Initialize β̄ga and boolean variable ς
2: for all nodes in path π do
3: ς ← false
4: Get l ∈ Ls and a ∈ A represented by the node
5: for all g ∈ Gs if Flg = 1 and v̂ga = 1 do . Constraints (E.1f)
6: if not (ŷl = 1 ∧ ûgl = 0) then . Constraints (E.1d)
7: if

∑
a∈Asmall

β̄ga + 2 ·
∑

a∈Alarge
β̄ga < 2 then . Constraints (E.1h)

8: β̄ga ← β̄ga + 1
9: ς ← true

10: break
11: end if
12: end if
13: end for
14: if ς = false then
15: return false . solution is infeasible
16: end if
17: end for
18: return true . solution is feasible

Algorithm H.1 can be described as a greedy heuristic that tries to assign parked aircraft to the
first available gate. Hence, there is no guarantee that Algorithm H.1 returns that a given solution
is feasible if it actually is feasible; however, if the solution is actually infeasible, Algorithm H.1 will
always return that it is infeasible.

41

Appendix I Planning scenarios for Munich Airport Terminal 1

The following figures illustrate the sets of gates G and lead-in lines L for Munich Airport Terminal
1 in the different planning scenarios, with ∆ = 5m and κ = 22.5◦. Figure I.1a depicts the greenfield
scenario, Figure I.1b shows the soft brownfield case, and Figure I.1c displays the true brownfield
instance. In all figures, physical obstacles that must not be touched by aircraft at any time are
visualized by red lines, taxiways are represented by yellow lines. Furthermore, existing gates are
marked by gray circles, all other gates are represented by cyan circles. Finally, existing lead-in lines
are represented by purple lines, all other lead-in lines by green lines.

(a) Greenfield (b) Soft brownfield (c) True brownfield

Figure I.1: Lead-in lines and gates at Munich Airport Terminal 1 in different planning scenarios

42

Appendix J Optimal layouts for Munich Airport Terminal 1, de-
mand patterns 1-4

The following figures are analogous to Figure 5 and provide the optimal layouts of all planning
scenarios for demand patterns 1 to 4.

(a) Greenfield (b) Soft brownfield (c) True brownfield

Figure J.1: Optimal solutions for different planning scenarios, demand pattern 1

43

(a) Greenfield (b) Soft brownfield (c) True brownfield

Figure J.2: Optimal solutions for different planning scenarios, demand pattern 2

44

(a) Greenfield (b) Soft brownfield (c) True brownfield

Figure J.3: Optimal solutions for different planning scenarios, demand pattern 3

45

(a) Greenfield (b) Soft brownfield (c) True brownfield

Figure J.4: Optimal solutions for different planning scenarios, demand pattern 4

46

	Introduction
	Problem Description
	Modeling Approach
	Model
	Solution Methodology
	Overview
	Decomposing the apron into independent areas
	Determining the set of demand decompositions
	Identifying efficient parking patterns
	Creation of demand decompositions

	Computing lower bounds for demand decompositions
	Acceleration techniques

	Computational Experiments
	Instances
	Computational performance compared to CPLEX
	Effectiveness of acceleration techniques
	Analysis of optimal layouts

	Conclusion
	Notation
	Process to compute aircraft safety envelopes
	Collisions of aircraft safety envelopes
	Merging Constraints (1j)
	Subproblems
	Algorithm to compute lower bounds for demand decompositions
	Algorithm to compute consistency of a demand decomposition
	Algorithm to check feasibility of a solution from a relaxed subproblem
	Planning scenarios for Munich Airport Terminal 1
	Optimal layouts for Munich Airport Terminal 1, demand patterns 1-4

