
Towards the Next Generation Airline Revenue Management: 
A Deep Reinforcement Learning Approach to Seat Inventory 
Control and  Overbooking

By Syed Shihab, Caleb Logemann, Deepak-George Thomas, and Peng Wei

Intelligent Aerospace Systems Lab

Iowa State University



Presenter’s bio

• Born in Jashore, Bangladesh

• Bachelor’s in EEE, AIUB, Bangladesh, 2012

• PhD in Aerospace Eng., ISU, Fall 2019 (expected)

• Research interests: operations research, value-

based engineering design, decision making under 

uncertainty, ML/AI/RL

• Fun Fact: I was ambushed by bears two summers 

back on a cycling trail in Aspen, Colorado



Outline

1. Introduction to airline Revenue Management  (RM), Reinforcement Learning (RL) and 

deep RL 

2. Motivation behind using deep RL approach

3. RM problem formulation   

4. Experiments and Results

5. Conclusion and future work



Revenue Management (RM)

 Objective: maximize revenue from all scheduled flight departures

 Decision making problems:

 Pricing 

 Seat inventory control

 Overbooking (OB)

1. https://pointmetotheplane.boardingarea.com/2018/09/21/airline-change-fees-might-and-should-go-the-way-of-the-dodo/
2. http://theflight.info/seat-map-boeing-767-300-american-airlines-best-seats-in-the-plane/
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Reinforcement Learning

Idea: Agent learns by interacting with 

environment

𝜋∗ = argmax
𝜋

𝐄 𝛾𝑡෍

𝑡=0

𝑇

𝑅 𝑠𝑡 , 𝑎𝑡 |𝜋Agent Environment

Action 𝑎𝑡

Reward 𝑟𝑡, state 𝑠𝑡+1

Goal: find the optimal policy 𝜋∗ ∶ S → 𝐴

Application domain: Sequential decision-making problems in stochastic environments

1. https://www.wired.com/2010/05/pac-man-google/
2. https://www.semanticscholar.org/paper/End-to-End-Training-of-Deep-Visuomotor-Policies-Levine-Finn/
3. https://www.offerzen.com/blog/how-to-build-a-content-based-recommender-system-for-your-product



 Modeling approach: Markov Decision Process (MDP)

 MDP components: states, actions, transition function and reward 

function

 Value of a state 𝑈∗ 𝑠

𝑈∗ 𝑠 = max
𝑎

(𝑅 𝑠, 𝑎 + 𝛾෍

𝑠′

𝑇(𝑠′|𝑠, 𝑎)𝑈∗ 𝑠′ )

 State-action values 𝑄∗ 𝑠, 𝑎

𝑄∗(𝑠, 𝑎) = 𝑅 𝑠, 𝑎 + 𝛾෍

𝑠′

𝑇(𝑠′|𝑠, 𝑎)max
𝑎

𝑄∗(𝑠, 𝑎))

 Agent does not have any knowledge of model dynamics

Reinforcement Learning

𝑎𝑡

𝑠𝑡 𝑠𝑡+1

𝑟𝑡



Q-learning

 Popular model-free RL algorithm

 Directly estimates 𝑄∗(𝑠, 𝑎) from experience

 Incremental update rule:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

 Balancing exploration and exploitation

 Exploit: Best action = max
𝑎

𝑄∗(𝑠, 𝑎))

 Explore: Random action



Deep RL

 Deep neural network is used for approximating the 𝑄∗(𝑠, 𝑎) values

 Domain knowledge is typically given as input to facilitate learning

 Useful for problems with large state spaces

 Not possible to visit all states

 Not possible to tabulate all values

 Agent can generalize from limited experience to states that have not yet been visited



Motivation

 Why use Reinforcement Learning (RL) in airline RM?

 Airline RM problem can be modeled as a MDP

 Potential alternative to existing RM systems?

 No need for complex revenue model

 After initialization, agent’s performance does not depend on demand model

 Room for exploration

 Why use deep RL?

 Generalization for large continuous state space

 Approximation of highly nonlinear state-action value function by incorporating domain 
knowledge 



RM Problem Statement

 Single Origin-Destination market

 Three fare classes: high ($300), middle ($200) and low ($100)

 Air travel market characteristics:

 Booking window = 365 days

 Arrival of passengers is modeled as a Poisson process

 Cancellation probability

 Passenger cancellation times follow a uniform distribution

 Bumping Cost (BC) = Fare reimbursement + goodwill cost 

 Flight capacity = 80

 Avg. # booking requests/flight = 100

 Goal: maximize revenue from each flight

 Task: optimally allocate seats and set overbooking levels for each fare class 



MDP Formulation

 State representation

𝑆 = 𝑇, 𝑏1, 𝑏2, 𝑏3, 𝑡

 Actions: accept, deny

𝐴 = {𝑎+1, 𝑎−1}

 Model dynamics

 When a customer requests booking, agent needs to take an action

 If booking request is accepted, increment corresponding booking class variable

 If a booking gets cancelled, decrement corresponding booking class variable

 Episode ends at t=0 (flight departure)

 Reward function

𝑅 =

𝑓𝑇
0

−𝑓𝑇
−𝐵𝐶

𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑎+1
𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑎−1
Occurrence of cancellation
at t = 0

Agent Market

Action 𝑎𝑡

Reward 𝑟𝑡, state 𝑠𝑡+1



Solution Method
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Neural Network Configuration

 2 hidden layers

 128 nodes in each hidden 

layer

 Relu activated layers

 Exploration strategy: linear 

annealed epsilon-greedy 

policy

 Implemented using Keras

and Keras-rl packages of 

Python

State 

Variables

Hidden Layers

Q(s, a-1)

Q(s, a+1) 



Experimental Results

 BC factor = 2

 Theoretical optimal revenue 

 Filling the aircraft to capacity 

starting with high fare 

passengers to lower fare ones 

without any bumping
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0 1 97.628 77.67 96.365

0 2 93.651 81.715 101.738

0 3 97.046 77.434 95.092

10 1 95.564 88.014 97.995

10 2 93.661 89.418 100.608

10 3 94.855 78.707 88.787

20 1 96.08 96.09 95.984

20 2 89.868 81.949 81.909

20 3 94.637 93.407 93.317



Experimental Results

 BC factor = 2

 Theoretical optimal revenue 

 Filling the aircraft to capacity 

starting with high fare 

passengers to lower fare ones 

without any bumping

 In most cases, agent achieved 
above 93 % optimal revenue

Fare class

distribution

Mean booking 

requests

1 [10,30,60]

2 [60,30,10]

3 [33,33,34]

Cancellation 

rate (%)

Fare class 

distribution

Avg. optimal 

revenue (%)

Avg. 

acceptance 

(%)

Avg. load 

factor (%)

0 1 97.628 77.67 96.365

0 2 93.651 81.715 101.738

0 3 97.046 77.434 95.092

10 1 95.564 88.014 97.995

10 2 93.661 89.418 100.608

10 3 94.855 78.707 88.787

20 1 96.08 96.09 95.984

20 2 89.868 81.949 81.909

20 3 94.637 93.407 93.317



Experimental Results

 BC factor = 2

 Theoretical optimal revenue 

 Filling the aircraft to capacity 

starting with high fare 

passengers to lower fare ones 

without any bumping

 In most cases, agent achieved 
above 93 % optimal revenue

Fare class

distribution

Mean booking 

requests

1 [10,30,60]

2 [60,30,10]

3 [33,33,34]

Cancellation 

rate (%)

Fare class 

distribution

Avg. optimal 

revenue (%)

Avg. 

acceptance 

(%)

Avg. load 

factor (%)

0 1 97.628 77.67 96.365

0 2 93.651 81.715 101.738

0 3 97.046 77.434 95.092

10 1 95.564 88.014 97.995

10 2 93.661 89.418 100.608

10 3 94.855 78.707 88.787

20 1 96.08 96.09 95.984

20 2 89.868 81.949 81.909

20 3 94.637 93.407 93.317

Cancellation 

rate (%)

Average

optimal 

acceptance 

(%)

0 80

10 88

20 100



Experimental Results

 BC factor = 2

 Theoretical optimal revenue 

 Filling the aircraft to capacity 

starting with high fare 

passengers to lower fare ones 

without any bumping

 In most cases, agent achieved 
above 93 % optimal revenue

Fare class

distribution

Mean booking 

requests

1 [10,30,60]

2 [60,30,10]

3 [33,33,34]

Cancellation 

rate (%)

Fare class 

distribution

Avg. optimal 

revenue (%)

Avg. 

acceptance 

(%)

Avg. load 

factor (%)

0 1 97.628 77.67 96.365

0 2 93.651 81.715 101.738

0 3 97.046 77.434 95.092

10 1 95.564 88.014 97.995

10 2 93.661 89.418 100.608

10 3 94.855 78.707 88.787

20 1 96.08 96.09 95.984

20 2 89.868 81.949 81.909

20 3 94.637 93.407 93.317

Cancellation 

rate (%)

Average

optimal 

acceptance 

(%)

0 80

10 88

20 100



Experimental Results

 BC factor = 2

 Theoretical optimal revenue 

 Filling the aircraft to capacity 

starting with high fare 

passengers to lower fare ones 

without any bumping

 In most cases, agent achieved 
above 93 % optimal revenue

Fare class

distribution

Mean booking 

requests

1 [10,30,60]

2 [60,30,10]

3 [33,33,34]

Cancellation 

rate (%)

Fare class 

distribution

Avg. optimal 

revenue (%)

Avg. 

acceptance 

(%)

Avg. load 

factor (%)

0 1 97.628 77.67 96.365

0 2 93.651 81.715 101.738

0 3 97.046 77.434 95.092

10 1 95.564 88.014 97.995

10 2 93.661 89.418 100.608

10 3 94.855 78.707 88.787

20 1 96.08 96.09 95.984

20 2 89.868 81.949 81.909

20 3 94.637 93.407 93.317

Cancellation 

rate (%)

Average

optimal 

acceptance 

(%)

0 80

10 88

20 100



Experimental Results

 BC factor = 2

 Theoretical optimal revenue 

 Filling the aircraft to capacity 

starting with high fare 

passengers to lower fare ones 

without any bumping

 In most cases, agent achieved 
above 93 % optimal revenue

Fare class

distribution

Mean booking 

requests

1 [10,30,60]

2 [60,30,10]

3 [33,33,34]

Cancellation 

rate (%)

Fare class 

distribution

Avg. optimal 

revenue (%)

Avg. 

acceptance 

(%)

Avg. load 

factor (%)

0 1 97.628 77.67 96.365

0 2 93.651 81.715 101.738

0 3 97.046 77.434 95.092

10 1 95.564 88.014 97.995

10 2 93.661 89.418 100.608

10 3 94.855 78.707 88.787

20 1 96.08 96.09 95.984

20 2 89.868 81.949 81.909

20 3 94.637 93.407 93.317

Cancellation 

rate (%)

Average

optimal 

acceptance 

(%)

0 80

10 88

20 100



Experimental Results

 BC factor = 2

 Theoretical optimal revenue 

 Filling the aircraft to capacity 

starting with high fare 

passengers to lower fare ones 

without any bumping

 In most cases, agent achieved 
above 93 % optimal revenue

Fare class

distribution

Mean booking 

requests

1 [10,30,60]

2 [60,30,10]

3 [33,33,34]

Cancellation 

rate (%)

Fare class 

distribution

Avg. optimal 

revenue (%)

Avg. 

acceptance 

(%)

Avg. load 

factor (%)

0 1 97.628 77.67 96.365

0 2 93.651 81.715 101.738

0 3 97.046 77.434 95.092

10 1 95.564 88.014 97.995

10 2 93.661 89.418 100.608

10 3 94.855 78.707 88.787

20 1 96.08 96.09 95.984

20 2 89.868 81.949 81.909

20 3 94.637 93.407 93.317

Cancellation 

rate (%)

Average

optimal 

acceptance 

(%)

0 80

10 88

20 100



Training plots for Test Case 6

 As the training progresses, agent learns how to control seat inventory and set 

overbooking limits



Test plots for Test Case 6

 Mean booking requests for the high, middle and low fare classes: 33, 33, and 34

 On average, agent allocates 33 seats for the high and middle fare classes, and the 

remaining 13 seats for the low fare class



Conclusion

 In most cases, the deep RL agent achieved above 93 % optimal revenue on average

 Performance of the agent improves with each episode

 Theoretically, given sufficient number of episodes, agent will learn the optimal policy

 Performance of the agent is sensitive to values of hyperparameters

 Suboptimal performance when bumping cost is low

 Higher exploration should improve results

 Next steps

 Dynamic pricing: include additional state variables for prices of airline’s and competitors’ 
fare products

 Benchmarking the performance of the algorithm with the EMSR method

 Network of flight legs

 Simulating demand disruptions



Questions and Comments?

Syed A.M. Shihab

shihab@iastate.edu


