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Did you hear we have a new livery?




Last year, we talked about three design choices that support the
measurement and improvement of forecast accuracy

Forecasting each OD/time
window instead of each possible

itinerary leverages the statistical
magic of aggregation

Conditional
demand

Forecasts
customers'

Willingness-to-pay-based forecasts
eliminate the guesswork of
demand un-constraining

willingness-to-
pay

Forecast
accuracy

Time Passenger
WINCIOWS lype
Captures Segments
customers’ customers based
preferences on characteristics

Forecasting demand for distinct
customer profiles (business,
leisure, award, etc) allows for

more granular segmentation
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As RM systems evolve, they relax constraints on customer choice

Fixed itineraries

*Customer preference is static
*Only the price of the single
itinerary matters

«Other itineraries don’t
influence decisions

Discrete time
preferences

«Customer preference is sticky
within discrete bands

*Neighboring time bands might
influence decisions

Continuous time
preferences

*Customer preference spans
across hours and maybe days

*Characteristics of a broad set
of options might influence
decisions

Wittman, Fiig, Adelving,
Belobaba
AGIFORS 2017
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Forecasting fixed itineraries assumes independence across choices and

exacerbates the “small numbers” problem
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Time windows assume discrete time preferences and are used to aggregate
demand across substitutable itineraries

XXX-YYY, 0900 departure — windows

O, NW

Bookings

o

20 40 60

XXX-YYY, 0830-1129 departures

XXX-YYY, 1000 departure

CV =4.0

o
N
o
oS
o
D
o

Bookings
OoOFrRr NW
®
e
|
Bookings
N
(
(
(

[EnY
[ J
®
®
®
®

XXX-YYY, 1100 departure 0 'eo000000000000 O © 000 O 00000 0000 000 000 S00000000000 ©

0 10 20 30 40 50 60
Observation period

CV =4.2

Bookings
OFrL N W

Observation period

UNITED ) o



Discrete time windows imply independence across time windows and are
subject to other calibration decisions

XXX-YYY, 0800 departure

XXX-YYY, 0900 departure

XXX-YYY, 0530-0829 departures

XXX-YYY, 1000 departure

XXX-YYY, 1200 departure

XXX-YYY, 0830-1129 departures

XXX-YYY, 1130-1429 departures

Discrete time
windows

But why these exact choices?

Clustering algorithms can be

sensitive to parameter choices
and can lead to second-guessing
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Discrete time windows also don’t easily account for schedule changes that
could affect preferences

Departure time

400
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1200
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Discrete time
windows

This flight might now be less

preferable, but discrete time
windows would not capture the
reduction in demand

Customers with strong mid-day
preferences might choose to take
connecting options instead

Some demand will spill onto this
1800 flight (and maybe even
some to 0600), but precisely how
much will depend on preferences
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True preferences are probably continuous; can we extend the discrete model?

Fri, Jun 14 ORD - DEN X

Oneway, 1 traveler

Continuous
preferences

5:30am 2h 32m 7:02am
ORD = DEN
7:00am 2h37m 8:37am
ORD = DEN
8:00am 2h 32m 9:32am
ORD = DEN
10:25am 2h 45m 12:10pm
ORD = DEN
11:15am 2h 34m 12:49pm A simple extension to a
o = o continuous model might not
easily capture interactions across
12:50pm 2h 44m 2:34pm anc .
ORD = DEN Iitineraries
2:25pm 2h 42m 4:07pm
ORD = DEN
4:00pm 2h 42m 5:42pm —
ORD ~ DEN UNITED% 9




In reality, customers consider an incredibly large number of factors

Are flights to Costa
I prefer to"go to Rica are cheaper?, I'll go to Costa Is the flight My WTP will be
Hawaii Rica higher

3407 T
I'll go to Hawaii =" paris *
but I'll have to - = ® $449
connect My WTP will be Is ita red-eye W
lower flight? v Jackson =
somewhere e | $341 = New York 1 Barcelona
4 $129 Lisbon $287
® o $496 | f
Lo Los Angeles b ) A e
&, $13 . gl .
Houston 2 3
) ~ : g.. ° . $97 @ Orlando Tenerife |
My WTP will be Is the connection My WTP will be . $130 $443
. . ey
very long? My WTP will be Does the flight v 8 o o

lower depart before Mexico City ’6 L Punta Cana
08007 g ¥$257" ] $370
' =GB o i
. @ | Liberia eVeie
$476
= ./ Bogotd
. O 302
Are the flights on Does carrier Y have $
carrier Z? a flight after 0800% 8
I'll buy a ticket My WTP will be i
on carrier Y higher Lima
$420
Tihgm
Rio de Janeiro
I'll buy a ticket My WTP will be My WTP will be Y. $721
on carrier Z much lower higher I'll buy a ticket o
on carrier X
Santiago

v

Google Flights search
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A passenger choice model that understands the tradeoffs between itinerary
attributes can help adapt the forecaster to network changes

Passenger Choice Model

Itinerary 1
— A-C at 7 am, 3 hours,
A320, $200: 40%

A319, $150: 12%

o
—
Q Iti 2
O A tinerary Total daily Itinerary share
] 8 —1 A-B-Cat2pm,5 hours, demand from Itinerary level
< S E175-A319, $100: 18% forecastin a passenger demand
o .. G choice model
X :
< % Itinerary 3
> % —1 A-Catl1lam, 3.5 hours,
Q
CD
)]

Itinerary 4
— A-C at 5 pm, 3 hours,
A320, $150: 30%
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A lot of work has been done to understand the formulation of passenger choice
modelling for airline industry

Network Planning

+ Conditional logit models

* Time of day preference usually not handled explicitly

» Fare sensitivity not handled, uses average fares for each itinerary in a market

Revenue Management and Pricing

+ Virginie Lurkin, Laurie Garrow, (2017) : Estimates an itinerary choice model with time-of-day preferences
and controls for price endogeneity using 2-stage control function, and compares the results of baseline
MNL model to more advanced GEV models

* C. Angelo Guevara(2016) : Assesses five methods (proxies, 2-stage control function, maximum
likelihood, multiple indicator solution, latent variables) to correct for price endogeneity in discrete choice
models

» Laurie A. Garrow (2013) : Formulates choice-based RM with a 2-step approach allowing estimation of all
parameters including price, and estimates nested logit models accounting for censoring by applying the
GEV choice-based sampling probabilities

» Sabre presentations on Dynamic Pricing and Joint Forecasting for Airline Pricing and Revenue
Management (2018) use discrete choice models
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Literature search reveals the most commonly used choice model to analyze
customer travel preferences is conditional logit

Attributes = Departure time, equipment, elapsed time, fare, etc.

Discrete
Choice

Choice

Set Model

Discrete Choice Model

Probability that

a person = Conditional Logit Model
chooses an
For a given market, departure date T
. among all
and days from departure, list of all choices
itineraries including non-stop and
connection

Probability

exp(x;B)
1., exp(xip)’
B: coefficients
Coefficients obtained by Maximum
Likelihood Estimation (MLE)

p; = X;: value of predictors,
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Traditional applications of conditional models have low computing complexity

Choice Probability

exp(Uj;)
i=1 €xp(U;;)

Lj

Choice e Travel Time

Travel Cost

attributes (X)) Mode preference >
* Individual level records
Passenger . :_”cha”t?gn «  Less number of alternatives
attributes (Z;) . Distance to Station » Choice set remain similar for individuals
* Multiple packages available to solve efficiently
« SAS-MDC
o

Utility (Uj) XiB+Zyy
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High number of alternatives for airline travel creates computation challenges

(oeparT v] (ARRIVE ¥ [DURaTION ¥ | [FROM/TO ¥ [ STOPS ¥ (ADVISORY ¥ . .
| e s et Choice attributes (X;)
Time at origin 6a 3:3 10: a 12’: p 2:P 4:P 6p B:p 1.0: p 12a 2a

Time at destination 5a 7a Sa 11a ip 3p 5p 7p 9p 11p 1a )
From §115 ORD to DEN ° DOW - Time of day
From $147 | ORD to DEN «  Non-Stop/ Connecting
From $147 ORD to DEN . Elapsed tlme
From $197 ORD to DEN fua ] . Price
From $197 ORD to DEN [va | ) .
From $197 | ORD to DEN [ua ] ° T|ght connection
From §197 ORD to DEN E o Equment
From §231 ORD to DEN IAH _
From $231 ORD to DEN E —
From $231 ORD to DEN : 1AH _ P
From §231 ORD to DEN — 1AH .
o $291 | ORD to DEN I — oo Passenger attributes (Z;)
From $253 ORD to DEN —
From $253 | ORD to DEN _ veo (NN o «  Business/Leisure
From §253 ORD to DEN _ . Market
From §259 ORD to DEN _ - Mco fua ] 0}
From $279 ORD to DEN — oTPA P
e iy

Too many alternatives -> No longer can use individual level records
Choice set changes with schedule changes and market

Source: https://matrix.itasoftware.com/ UNITED 3 15



Limited options exist to solve the problem efficiently

= “Larch” in Python was recently developed to improve the efficiency of the estimation

Computation times?

Larch Biogeme Stata
Data loading 6.63 secs 0 mins 10 secs 4.87 secs
MNL 0.72 secs 3 mins 9 secs 15.34 secs
2-level NL 2.06 secs | 286 mins 34 secs 7 mins 37 secs
3-level NL 2.30 secs NA 21 mins 41 secs
Constrained OGEV with T =1 2.14 secs 3 days 23 hours NA
Constrained OGEV with T =2 2.50 secs 4 days 23 hours NA

= Any statistical software using Maximum likelihood function
— Maximize the likelihood function

B =argmaxg[in(L(B))]=argmaxg[y,; InP; = ¥;; ¥ ; y;;InP;j] where y;: 1 if individual i made choice j and 0 otherwise

1: LARCH: A package for estimating multinomial, nested, and cross-nested logit models that account for semi-aggregate data, AGIFORS 2016 UNITED % 16



Initial approach was to use discrete time intervals to model time of day
preference

Discrete Time of Day Approach Discrete Time of Day Curve

Conditional Logit Model Time of day preference ﬂ
«Utility function = g, = exp(B;

TOD_5;+ ... + T =51 ey O
B1oTOD_23; + i=1,...,19
BoAverage_Fare; +
B21Narrow_Body; + 56 7 8 91011121314 151617 18 19 20 21 22 23
B2 Wide_Body; + ...
{ J { J

Cons

+ Same time of day preference within
the discrete interval

* Boundary issues

Controlling for other factors, their coefficients cancel out in T;
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Moved to continuous modeling with Fourier Series to address the issues with
discrete time of day modeling

Conditional Logit Model Time of day preference
« Utility function =
51 [Bsp sin (2mp 2 +

1440
DepTm
*Bep cOS (an 1440 )]+
« 3, Carrier; +
BzNarrow_Body; +
[)’3Wide_BOdyi +
psAverage_Fare;+...

. DepT
o W =2~ 2 for

each minute in the day

56 7 8 910111213 141516 17 18 19 20 21 22 23

A J A J
Pros
* More granular preference
Controlling for other factors, their coefficients cancel out in T; throughout the day

e Smooth transitions
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Nested structures can be explored to improve the model accuracy

I_I_I

]
|
8am 5pm .

Continuous

time of da Continuous Independent
Share : Y | time of day time
without q :
with nest windows
nest
[tinerary 1 2504 35% 40%
at 8 am
Itinerary 2
37.5% 32.5% 30%
at5 pm
ftnerary 3 37 504 32.5% 30%
at 5:15 pm ’ '

Proportional substitution

Introduction of a new mode or
improvements to any existing mode will
reduce the probability of existing modes
in proportion to their probabilities before
the change (implies equal competition
between all pairs of alternatives )

Pnj eVni/ ZJ evﬂj

Pnk evnk/ Z] evnj

V. .
e’ o
— evm Vnk

e Vnk
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Model segmentation is crucial for capturing time of day preference accurately

Market A Market B Market A

Morning at Afternoon Evening at
8 am at1l pm 5 pm

Afternoon

Morning at Evening at at 1 pm

Evening at

8 am (50%) 5 pm (50%) (50%) 5 pm (50%) (33%) (33%) (33%)

Time of day preference of a new time channel in a market can be measured more accurately by
segmenting similar markets together
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Next steps include building a nested model structure and model segmentation

Model
Nested Model Segmentation

( ) ( )

Number of levels,
Cross nests, etc.

Market entities

N J N J
) ( )
Alternative Passenger type,
hierarchy of cabin, point of
i variables | | commencement |
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In the future, optimization could also be improved to capture the interplay
between price and itinerary quality

Market A

| } | [ | |
Itin 1 Itin 2 Itin 3

Itin 1 Itin 2 Itin 3 Dmd =
Dmd = f(py) Dmd = f(p,) Dmd = f(py)

Dmd =
f(p1,P2:P3)

Dmd =
f(P1,P2,P3)

f(p1,P2:P3)

Max Revenue = Dmd(ltin 1)*p, + Dmd(Itin 2)*p,+ Max Revenue = Dmd(ltin 1)*p, + Dmd(Itin 2)*p,+
Dmd(Itin 3)*p5 Dmd(Itin 3)*p5
s.t. capacity constraints s.t. capacity constraints
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