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Flight timetabling can greatly impact an airline’s operating profit, yet data-driven or model-based solutions

to support it remain limited. Timetabling optimization is significantly complicated by two factors. First, it

exhibits strong interdependencies with subsequent fleet assignment decisions of the airlines. Second, flights’

departure and arrival times are important determinants of passenger connection opportunities, of the attrac-

tiveness of each (nonstop or connecting) itinerary, and, in turn, of passengers’ booking decisions. Because

of these complicating factors, most existing approaches rely on incremental timetabling. This paper intro-

duces an original integrated optimization approach to comprehensive flight timetabling and fleet assignment

under endogenous passenger choice. Passenger choice is captured by a discrete-choice Generalized Attrac-

tion Model. The resulting optimization model is formulated as a mixed-integer linear program. This paper

also proposes an original multi-phase solution approach, which effectively combines several heuristics, to

optimize the network-wide timetable of a major airline within a realistic computational budget. Using case

study data from Alaska Airlines, computational results suggest that the combination of this paper’s model

formulation and solution approaches can result in significant profit improvements, as compared to the most

advanced incremental approaches to flight timetabling. Additional computational experiments based on sev-

eral extensions also demonstrate the benefits of this modeling and computational framework to support

various types of strategic airline decision-making in the context of frequency planning, revenue management,

and post-merger integration.
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1. Introduction

Airline profitability is affected by a variety of complex factors, some of which are under an airline’s

control, including the set of Origin-Destination (O-D) markets being served, the frequency of the

flights offered on each segment, the times at which these flights are scheduled, the number of seats on

the aircraft used for each flight, and the fares which are offered. Maintaining consistent profitability

levels requires coordination across an airline’s departments including network planning, marketing,

pricing, revenue management and operations. Airlines have traditionally been at the forefront of

innovation in data-driven decision-making and developing automated decision-support tools. Yet,
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completely automated decision-making has been a rarity for some of the most critical decision-

making steps taken by airlines across the world. In fact, some of the most critical decisions still

rely on decision-making tools that do not fully integrate passengers’ preferences, on the demand

side, and the dynamics of flight scheduling, on the supply side. This may result in missed revenue

opportunities and imbalances between the passengers’ preferences and the offered traveling options.

Timetable development is one such critical decision-making step for which integrated analytical

optimization methods remain limited.

The airline planning process consists of a variety of decision-making steps including route plan-

ning, schedule design, fleet assignment, aircraft routing and crew scheduling, which are typically

carried out sequentially. Route planning involves determining which flight segments to offer and

which O-D markets to serve. This step not only deals with planning the airline’s own operations but

also includes partnership planning—that is, deciding which partner flights to use for code-sharing.

Next, schedule design contains two sub-steps: frequency planning and timetable development (or

timetabling for short). Frequency planning involves the choice of the number of flights operated daily

on each nonstop segment in the airline’s network. Timetabling involves determining the scheduled

departure and arrival times for each of these flights. The next step, fleet assignment, determines

the fleet type to be used for each flight, with the objective of matching the number of available

seats with passenger demand. While larger aircraft may lead to higher operating costs, smaller

aircraft may result in revenue losses because some passengers may get “spilled” if the number of

available seats is smaller than passenger demand. Next, aircraft routing involves generating feasible

routes for each individual aircraft while ensuring that maintenance requirements are satisfied. Last,

crew scheduling includes crew pairing, i.e., combining flights into sequences starting and ending

at a crew base, and crew rostering, i.e., creating monthly schedules from these flight sequences

and assigning them to individual crew members. All these decisions, taken together, determine the

airline’s service offerings and daily operations, and can therefore have a considerable impact on

its profitability. While some of them (e.g., fleet assignment) have been the subject of considerable

research, others (e.g., timetabling) lack systematic decision-making tools.

Airline timetabling decisions are significantly complicated by the endogeneity of fleet assignment

decisions and passenger booking decisions. From a passenger’s perspective, important determinants

of the attractiveness of each itinerary include the departure and arrival times of the flights in that

itinerary, as well as connection times in case of a connecting itinerary, all of which are defined by

flight timetables. For example, itineraries departing during early mornings and late afternoons are

typically more attractive than other itineraries to many passengers. Additionally, flight timetables

that generate more passenger connection opportunities lead to more flying options for passengers.

These are especially useful in low-demand markets which do not support nonstop flights. An obvious
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goal of timetabling is to schedule flights at times that are most attractive to passengers (also known

as peak times). However, a naive implementation of such strategy could violate constraints related

to fleet availability and aircraft operations. Also, as mentioned earlier, different fleet types vary

in seating capacity and can lead to considerable variations in profit even for the same timetable.

In summary, in order to generate feasible and profitable timetables, it is essential to integrate

fleet assignment decisions and the dynamics of passengers’ booking decisions across alternative

itineraries into the airlines’ timetabling decision-making process.

Most existing research in airline timetabling considers only incremental changes to existing

timetables. The commonly used approaches start with a feasible timetable (e.g., from historical

operations), and aim to find marginal improvements by retiming of some flight legs and/or using a

combination of mandatory and optional flight legs. There is very little research on comprehensive

(as against incremental) timetabling methods where an optimal timetable is developed from scratch

rather than relying on modifications to an existing timetable. This can be explained by legacy

reasons: major airlines have adjusted their timetables incrementally for many years and may not

believe that drastic changes to the timetables can yield significant benefits. In addition, airlines

often operate under complex administrative and managerial constraints that may prevent radical re-

designs of their networks of flights. But the lack of comprehensive timetabling tools also stems from

the mathematical and computational challenges associated with developing and solving integrated

timetabling and fleet assignment models. Mathematically, this requires the integration of highly

nonlinear and non-convex passenger choice models into the large-scale mixed-integer optimization

frameworks necessary to solve timetabling and fleet assignment problems faced by major airlines.

Computationally, this requires new algorithms for solving the resulting optimization models within

reasonable time horizons to demonstrate the benefits of the comprehensive timetabling approach

over incremental approaches that already exist in the literature and in practice. The purpose of

the research presented in this paper is to address these two interrelated technical challenges.

This paper introduces an original integrated optimization approach to comprehensive timetabling

and fleet assignment under endogenous passenger choice. While our modeling approach can capture

a variety of discrete-choice models of passengers’ booking decisions, we use here the Generalized

Attraction Model (GAM) recently proposed by Gallego et al. (2015). This encompasses, as special

cases, many well-known discrete-choice models, such as the multinomial logit model (MNL). We use

a linearization technique to integrate the GAM into our optimization model of flight timetabling

and fleet assignment, while retaining a mixed integer linear programming structure.

The resulting model, despite being a mixed-integer linear (rather than nonlinear) optimization

model, is still highly intractable by commercial solvers due to its extremely large size. We thus

develop an original multi-phase solution approach, along with several heuristics, to optimize the
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network-wide timetable of a major airline carrier within a realistic computational budget. From

a practical standpoint, our modeling and computational framework provides decision support for

airlines interested in generating new timetables, evaluating or enhancing their existing timetables,

or analyzing various business strategies such as considerations of mergers and acquisitions. Fur-

thermore, we demonstrate the value of integrating timetabling decisions with other planning steps,

such as frequency planning and revenue management, to improve the airline’s overall profitability.

Note that this is a particularly exciting time in the airline industry to develop a tractable

approach to comprehensive timetabling optimization. In particular, we are aware that at least one

of the world’s ten largest airline carriers is working closely with a prominent airline optimization

software vendor to develop their timetables from scratch. Our discussions with that vendor and

multiple large airline carriers have indicated a strong interest in this topic, and have suggested

that solution tractability remains the primary challenge in such endeavors. Nevertheless, we are

not aware of any study in the existing scientific literature that addresses this challenge explicitly.

1.1. Literature Review

In this section, we first provide an overview of the fleet assignment model (FAM). We then discuss

existing studies that integrate passenger flows and incremental timetabling decisions into the FAM,

and limitations thereof. We conclude with a brief review of the recently studied discrete-choice

models of passengers’ booking decisions that we will integrate into our optimization model.

The airline fleet assignment problem has been a canonical problem in transportation science since

the early work of Abara (1989) and Hane et al. (1995). The initial model formulations and compu-

tational solutions reported in these papers showed the potential for significant profit improvements

through the use of optimization models and automated decision support to match aircraft fleet

types with passenger demand under a variety of operating constraints. These two papers used a

flight leg-based passenger demand assumption. This was then improved by integrating an itinerary-

based demand model to capture the effects of hub-and-spoke network operations on optimal fleet

assignment decisions (Barnhart et al. 2002, 2009). Computationally, FAM involves large-scale opti-

mization problems and, thus faces considerable challenges in solving them to optimality (or near

optimality) in reasonable time frames. These challenges are particularly severe under the itinerary-

based demand assumption, which increases the model requirements significantly as compared to the

flight leg-based demand assumption. Therefore, extensive FAM research has also focused on devel-

oping efficient solution approaches based on various techniques, including Benders decomposition

(e.g., Jacobs et al. (2008)) or very large-scale neighborhood search (e.g., Ahuja et al. (2007)).

One of the main challenges in FAM involves capturing the endogeneity of passenger choice, i.e.,

the impact of airline fleeting decisions on passenger flows across the network of flights (Barnhart
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and Vaze 2015). Two important considerations when modeling such endogeneity are spill (i.e.,

the revenue lost if the assigned fleet type is unable to satisfy passenger demand) and recapture

(i.e., the part of the spilled revenue that is re-captured by redirecting passengers to other flights

of the same airline). These were first addressed by Kniker (1998) and Barnhart et al. (2002),

who combined a Passenger Mix Model (PMM) into the FAM to approximate spill revenue in an

itinerary-based modeling framework. PMM was formulated as a large-scale network flow problem

and solved using column and row generation techniques. Subsequent work extended these ideas

to optimize fleet assignment adjustments in response to improved demand forecasts that become

available closer to the day of departure, known as demand-driven re-fleeting (Sherali et al. 2005).

This was integrated into the FAM by Sherali and Zhu (2008) in a two-stage setting where the first

stage only performs assignment decisions at a higher “fleet family” level, while the second stage

adjusts them in response to demand realizations.

Thus, important advances have been made toward capturing passengers’ booking decisions and

resulting passenger flows into airlines’ fleet assignment decisions. However, none of the aforemen-

tioned studies considers flight timetabling explicitly. Before proceeding further, we note that airline

timetabling decisions, airline fleet assignment decisions and passenger booking decisions are closely

interrelated. For example, consider a nonstop segment between Airport A and Airport B with a

block time (defined as the difference between the departure time and arrival time) of 2 hours, with

two timetabling alternatives:

(i) Two flights per day from A to B: 9 am – 11 am (i.e., departure at 9 am and arrival at 11 am)

and 3 pm – 5 pm; and two flights per day from B to A: 12 pm – 2 pm and 6 pm – 8 pm.

(ii) Two flights per day from A to B: 9 am – 11 am and 6 pm – 8 pm; and two flights per day from

B to A: 9 am – 11 am and 6 pm – 8 pm.

While the two alternatives have the same number of flights per day, they might lead to very differ-

ent passenger flows, revenues and operating costs in the FAM. For instance, Alternative (ii) might

generate higher demand due to the alignment of its flight offerings with peak morning and evening

hours. On the other hand, Alternative (i) can be operated with a single aircraft (assuming a min-

imum aircraft turnaround time of 1 hour or less), which might lead to lower network-wide costs.

Moreover, the profit contribution of these two alternatives also depends on the fleet assignment

decisions; for example, Alternative (ii) might not yield much higher revenue than Alternative (i)

if the available number of seats on each flight is small. Therefore, any timetabling optimization

model needs to integrate fleet assignment decisions and passenger booking decisions into it.

Given the considerable computational requirements of solving the FAM alone, augmenting it to

integrate with timetabling decisions and passenger booking decisions results in extremely complex

optimization models. For this reason, researchers have mostly focused on incremental timetabling



Wei, Vaze, and Jacquillat: Airline Timetable Development and Fleet Assignment
6

approaches, often by only allowing small deviations from an existing schedule. For example,

Lohatepanont and Barnhart (2004) consider sets of mandatory and optional flight legs, along with

spill and recapture models. The only timetabling flexibility in this model is the possibility of

eliminating a subset of the optional flight legs. This approach has been improved by considering

stochastic passenger demands (Yan et al. 2008) and by involving aircraft and passenger delay costs

(Pita et al. 2013). Other studies have added other decisions into this framework, such as flight block

times (Jiang and Barnhart 2013), the re-timing of flight legs under congestion (Sohoni et al. 2011),

aircraft routing (Sherali et al. 2013b), frequency planning and multi-modal competition (Cadarso

et al. 2017), etc. Most recently, Abdelghany et al. (2017) developed a timetabling model for rev-

enue maximization that considers passenger demand shifts among airline competitors. This was

formulated using an incremental approach that allowed each flight’s departure time to be optimized

within a specific time window. Moreover, this formulation included a non-convex objective func-

tion, which makes the model impractical to solve in most real-world instances. More closely related

to our approach, Wang et al. (2014) incorporated passenger choice into a mixed-integer linear pro-

gram for fleet assignment, where passenger spill and recapture are based on the “attractiveness” of

itineraries. They also suggested the possibility of extending their formulation to capture incremen-

tal timetabling decisions. This contrasts with our goal of addressing the comprehensive timetabling

problem. Moreover, their computational results suggest that the consideration of passenger choice

makes the resulting model extremely hard to solve as compared to the traditional itinerary-based

FAM. No results were reported for even the incremental flight timetabling problem.

Turning to the passengers’ booking decisions, a separate recent stream of literature has focused

on passenger choice modeling in the airline industry (Garrow et al. 2010, Jacobs et al. 2012).

The most commonly used model is the multinomial logit model (MNL), which assumes that each

passenger’s itinerary choice depends on the utilities derived from that itinerary and from all the

alternative itineraries in a given choice set (McFadden 1973). More advanced approaches such as

the mixed multinomial logit model (McFadden and Train 2000) and the generalized extreme value

model (Bhat et al. 2008) have been proposed to capture passenger behaviors more accurately.

Empirically, Coldren et al. (2003) and Koppelman et al. (2008) have applied discrete-choice models

using data from United Airlines and Boeing, respectively, to identify the drivers of passengers’

booking decisions across competing itineraries. Most recently, Lurkin et al. (2017) extended the

MNL to account for price endogeneity by using an approach based on instrumental variables. We

use the model estimated in this paper in our computational experiments.

In summary, determining the “optimal airline timetable” remains an open question. All the

relevant previous studies are based on incremental improvements to an existing timetable. Recently,

empirical discrete-choice model specifications of airline passenger choice behavior have become
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available, but have not been integrated into airline fleeting or timetabling decisions. Therefore,

new methodologies are required to (i) formulate a comprehensive (as opposed to incremental)

airline timetabling model (ii) integrate a model of passenger choice that reflects the endogeneity

of passengers’ booking decisions, and (iii) ensure the tractability of the integrated model.

1.2. Contributions and Outline

This paper develops and applies an original modeling and algorithmic approach that integrates

airlines’ comprehensive timetable development and fleet assignment decisions under endogenous

passenger choice. Our model formulation leverages the concept of a sales-based linear programming

model from the airline revenue management literature (Gallego et al. 2015). Our approach contrasts

with the existing literature in three major ways. First, our timetabling model does not involve

only incremental timetabling decisions using an existing timetable as a starting point. Instead, it

addresses the comprehensive timetabling problem starting from a clean slate. Second, it captures

the endogeneity of passengers’ booking decisions through a discrete-choice model, unlike most

existing incremental approaches that assume the passenger demand to be invariant with marginal

timetabling adjustments. Third, it develops a suite of computational algorithms that enable solving

the integrated model for problem instances of realistic sizes and deriving practical insights from

computational experiments. Specifically, this paper makes the following four contributions.

1. It incorporates a sales-based linear programming framework to accurately capture the

itinerary-level demand substitution effects into a comprehensive timetable development and

fleet assignment optimization model. The resulting model is formulated as a mixed-integer lin-

ear program (MILP). To our knowledge, ours is the first research study to capture an airline’s

comprehensive timetable development problem under passenger choice.

2. We design an effective multi-phase solution approach to solve this model for large-scale prob-

lem instances. We demonstrate that, by narrowing down the flight’s departure time range

step-by-step, a high quality solution could be obtained within reasonable computational run-

times—even though the model is intractable with commercial solvers. Additionally, we develop

several variable-fixing and symmetry-inducing accelerated heuristics that are shown to obtain

an even better solution. We embed these approaches within our multi-phase MILP framework.

3. We present a detailed comparison of our integrated comprehensive approach with the various

incremental timetable development approaches found in the literature and in practice, using

a major U.S. legacy airline carrier’s network. We validate that our modeling and algorithmic

framework can yield significant profit improvements for major airlines.

4. We perform additional case studies under modeling, computational and practical extensions to

provide several practical insights and demonstrate the benefits of this modeling and computa-

tional framework. These extensions provide computational tools for strategic decision-making

in the contexts of frequency planning, revenue management, and post-merger integration.
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The rest of the paper is organized as follows. Section 2 presents our integrated comprehensive

timetabling and fleet assignment model. Section 3 presents the multi-phase solution approach and

our acceleration heuristics. Section 4 lists our computational results using different test networks

with varying sizes to highlight the benefits of our solution approach. Section 5 compares the results

from our model with those obtained using a variety of incremental approaches. Section 6 presents

the results of three different extensions of our modeling and algorithmic framework. We summarize

the main findings of the paper and discuss future research opportunities in Section 7.

2. Integrated Timetable Development and Fleet Assignment Model

Our overall modeling architecture is shown in Figure 1. Its main element is our integrated timetable

development and fleet assignment model, formulated as a mixed-integer linear program. It takes

the perspective of a single airline (the “host airline”, henceforth). The model’s inputs are the host

airline’s available fleet and operating costs, on the supply side, and the attractiveness of the host

airline’s itineraries and its competitors’ itineraries, on the demand side. These inputs are obtained

from a variety of databases as well as aircraft operating cost models (Swan and Adler 2006) and

itinerary choice models (Lurkin 2016). The model is solved using a multi-phase solution approach

along with two heuristics: a Fleet Fixing approach and a Symmetry approach. The model then

provides the comprehensive flight timetables and fleet assignment solutions.

Before proceeding further, two important observations regarding the scope of this paper are

noteworthy. First, the paper focuses on optimizing the timetable development and fleet assignment

decisions from the perspective of a single airline, and assumes that the decisions of all other

airlines are fixed. In practice, one could argue that any scheduling change from one airline may

trigger potential responses from the other airlines. However, given the complexity of the problem,

we ignore these competitive dynamics in this paper, as commonly done in the fleet assignment

and schedule design literature. Second, timetable development and fleet assignment decisions in

practice need to take into account a number of additional considerations that lie out of the scope

of this model due to the limitations of the publicly available datasets. Examples include airport

slot and gate availability constraints—which are typically not too restrictive at most airports in

the United States—and airline crew availability constraints. Adding such considerations into the

model formulation would be relatively straightforward.

In Subsection 2.1, we first describe the underlying methodology used to integrate a passenger

choice into a mixed-integer linear programming model. Next, we formulate our model mathemati-

cally in Subsection 2.2.
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Figure 1 Modeling Architecture

2.1. Passenger Choice Model

A Passenger Mix Model (PMM) has been the most common approach to model passenger flows

in a network of flights. In one of the first prominent PMM studies, Glover et al. (1982) computed

the passenger flows that maximize operating profit, based on a given fleet assignment solution and

passenger demand information. Classical PMM assumes the spill and recapture rates to be known

a priori for each itinerary. These simplified assumptions about passengers’ behaviors have been

used in airline scheduling and fleet assignment until recently (Kniker 1998, Barnhart et al. 2002).

However, within the airline revenue management literature, there have been frequent attempts

to integrate discrete-choice passenger behavior models into the revenue optimization formulations

(McGill and van Ryzin 1999). While the scheduling model developed in this paper can leverage a

variety of such discrete-choice models, we consider here the Generalized Attraction Model (GAM)

recently proposed by Gallego et al. (2015).

The GAM was developed to address some inaccuracies stemming from the Independence of

Irrelevant Alternatives (IIA) property of the more commonly used multinomial logit model (MNL).

These inaccuracies can be described by the so called “Blue-Bus, Red-Bus Paradox” (Ben-Akiva and
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Lerman 1985): Consider a person with a 50% probability of traveling by bus and a 50% probability

of driving. If a second bus alternative, with identical attributes as the first bus alternative, was

added, the IIA property would predict that this person has a 33% probability of taking the existing

bus, a 33% probability of taking the newly added bus, and a 33% probability of driving while, in

fact, it is more reasonable to expect a 25% probability of taking each bus and a 50% probability

of driving. More generally, even if the attributes of the two bus alternatives are not identical,

there often exist interdependencies between available and latent alternatives, leading to violations

of the IIA property. The GAM addresses this in a systematic manner by assuming each choice

probability to be a function of the actual attractiveness of all available alternatives as well as the

shadow attractiveness of all alternatives (including those not available). In the context of passenger

itinerary choice, this can be described as follows.

We consider a set of all itineraries offered by the host airline, denoted by I, and assume that

an itinerary set I ′ ⊂ I is actually available to choose from. We denote by ui the passenger utility

associated with itinerary i∈ I. Let Ai be the attractiveness of itinerary i, defined as Ai = eui , and

let AO be the attractiveness of the outside option, defined as the aggregation of all itineraries of

all other airlines as well as the no-fly alternative. According to the MNL, the probability that a

passenger will choose any itinerary i ∈ I ′ is equal to the ratio of its attractiveness to the total

attractiveness of all other alternatives, i.e.:

πMNL
i =

Ai
AO +

∑
j∈I′ Aj

,∀i∈ I ′; πMNL
i = 0,∀i∈ I \ I ′. (1)

In the GAM, by denoting the shadow attractiveness of each itinerary i ∈ I by wi, the probability

that a passenger selects any itinerary i∈ I ′ is modified as follows:

πGAMi =
Ai

AO +
∑

j∈I\I′ wj +
∑

j∈I′ Aj
,∀i∈ I ′; πGAMi = 0,∀i∈ I \ I ′. (2)

If we define adjusted attractiveness values ÃO and Ãi as ÃO =AO +
∑

i∈I wi and Ãi =Ai−wi,

Equation (2) can be simplified as follows:

πGAMi =
Ai

ÃO +
∑

j∈I′ Ãj
,∀i∈ I ′; πGAMi = 0,∀i∈ I \ I ′. (3)

Careful choice of the shadow attractiveness values can circumvent the aforementioned “Blue-

Bus, Red-Bus Paradox”, and thus provide a more accurate representation of passengers’ booking

decisions. Attraction parameters Ãi and the shadow attraction parameters wi can be obtained

based on maximum likelihood estimation and least squares methods (Gallego et al. 2015). In the

remainder of this paper, we use the GAM model to characterize passenger choice.
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2.2. Optimization Model Formulation

Throughout this paper, a “market” is defined as an origin-destination (O-D) pair of airports

between which the passengers demand travel. On the other hand, a “segment” corresponds to

an ordered pair of airports between which an airline operates nonstop flight(s). This distinction

between markets and segments stems from the fact that some passengers use connecting itineraries

with more than one nonstop flight to go from their respective origins to destinations. An “itinerary”

represents a sequence of consecutive flights used by a passenger to complete a trip starting at the

origin airport and ending at the destination airport. For example, if a passenger flies from San

Francisco (SFO) to Denver (DEN) and then to Boston (BOS), the corresponding market is SFO-

BOS, the two segments in this trip are SFO-DEN and DEN-BOS, and the itinerary comprises two

specific flights, one from SFO to DEN and another from DEN to BOS. A “fare class” is defined

as one of the multiple purchasing options provided by the airline in any market, associated with

a particular cabin (e.g., economy, business), various restrictions (e.g., time of purchase), and fare

itself. On the demand side, “passenger types” refer to different market segments, where each indi-

vidual market segment consists of passengers with similar price sensitivities and time sensitivities.

Thus, all passengers of the same type are assumed to have similar trade-offs between prices and

departure times. Business and leisure passengers are the two most common passenger types, but

they can also be defined at a finer level of granularity.

We represent timetabling and operating decisions in a time-space network, where each node is

associated with a unique combination of fleet type, airport and time period. The start node of

each flight arc corresponds to the scheduled departure time while the end node of each flight arc

corresponds to the scheduled arrival time plus the minimum aircraft turnaround time. This is a

standard modeling choice in the fleet assignment literature (Hane et al. 1995). We consider a full

day of operations, which we discretize into 15-minute time periods. We assume that no more than

one flight will be scheduled on any given segment during any given 15-minute period, a reasonable

assumption in practice. For simplicity of the exposition, we also assume that the flight timetable is

repeated daily. Note that this assumption can be easily relaxed in our formulation (e.g., to capture

variations in market demand or flight frequencies by day of the week or with seasonality).

We now formulate our integrated model of flight timetabling and fleet assignment.
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Sets and indices

AP : Set of all airports served by the host airline; indexed by ap.
M : Set of all markets served by the host airline; indexed by m.
S : Set of all segments served by the host airline; indexed by s.
So(ap)⊂S : Set of segments served by the host airline with airport ap as origin; indexed by

s.
Sd(ap)⊂S : Set of segments served by the host airline with airport ap as destination; indexed

by s.
T : Set of all 15-minute time periods in a day; indexed by t.
F : Set of all fleet types available to the host airline; indexed by f .
PT : Set of all passenger types; indexed by pt.
CL : Set of all fare classes from the host airline; indexed by cl.
FL : Set of red-eye flights of the host airline —that is, set of pairs (s, t) of seg-

ments and departure times such that the corresponding flight is en-route at the
beginning of the day.

Im : Set of all itineraries in market m offered by the host airline; indexed by i.
N : Set of all nodes in the time-space network of the host airline; indexed by (f ,

ap, t), for fleet type f , airport ap, and time period t.

Ĩm,s,t : Set of all itineraries of the host airline in market m which use a flight on segment
s with departure time period t; indexed by i.

Parameters

Demm,pt : Total demand of type pt passengers in market m.
Ai,pt,cl : Attractiveness of itinerary i and fare class cl offered by the host airline for

passenger type pt.

Ãi,pt,cl : Adjusted attractiveness of itinerary i and fare class cl offered by the host airline
for passenger type pt.

A0
m,pt : Total attractiveness of all itineraries of other airlines and of the no-fly alterna-

tive, in market m, for passenger type pt.

Ã0
m,pt : Adjusted total attractiveness of all itineraries of other airlines and the no-fly

alternative, in market m, for passenger type pt.
Pi,cl : Estimated ticket price of fare class cl for itinerary i offered by the host airline.
Opes,f : Operating cost of a flight, on segment s, operated using fleet type f by the host

airline.
Capf : Seating capacity of an aircraft of fleet type f .
Freqs : Number of flights of the host airline per day on segment s.
Availf : Available number of aircraft of fleet type f for the host airline.
MinT : The first time period of the day.
MaxT : The last time period of the day.
D(s, t) : Scheduled departure time of a flight of the host airline on segment s with end

node in time period t (after scheduled en-route time plus minimum aircraft
turnaround time).

As described in Section 2.1, we use a Generalized Attraction Model (GAM) to characterize

passengers’ itinerary choice across the set of available alternatives. Note, however, that compared

to the ui and Ai values in Section 2.1, we re-define the utility ui,pt,cl and the attractiveness Ai,pt,cl

here as functions of the itinerary, the passenger type and the fare class. We also re-define the

attractiveness (AO in Section 2.1) of the outside option as A0
m,pt so that it is a function of the
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market and the passenger type. These values are obtained from the passenger utilities derived from

the outside option, denoted by u0
m,pt. The utilities ui,pt,cl and u0

m,pt are expressed as linear functions

of a set of itinerary attributes that affect passenger choice. For each combination of itinerary i

and fare class cl, and for each passenger type pt, we denote this attribute vector by zi,pt,cl and

the corresponding vector of linear coefficients by βi,pt,cl. For instance, the empirical specification

provided by Lurkin (2016) uses the following attributes: total trip time, number of connections,

departure time of the day, ticket price, distance of the itinerary, direction of travel, number of time

zones crossed and departure day of the week. Similarly, for each market m and each passenger type

pt, we denote the attribute vector associated with the outside option by z0
m,pt and the corresponding

vector of linear coefficients by β0
m,pt. Finally, we denote by wi,pt,cl the shadow attractiveness of

itinerary i and fare class cl for passenger type pt. We then have:

ui,pt,cl =βββi,pt,cl · zi,pt,cl ∀i∈ Im,m∈M, pt∈PT , cl ∈ CL (4)

Ai,pt,cl =exp(ui,pt,cl) ∀i∈ Im,m∈M, pt∈PT , cl ∈ CL (5)

u0
m,pt =βββ0

m,pt · z0
m,pt ∀m∈M, pt∈PT (6)

A0
m,pt =exp

(
u0
m,pt

)
∀m∈M, pt∈PT (7)

Ãi,pt,cl =Ai,pt,cl−wi,pt,cl ∀i∈ Im,m∈M, pt∈PT , cl ∈ CL (8)

Ã0
m,pt =A0

m,pt +
∑
j∈Im

∑
cl∈CL

wj,pt,cl ∀m∈M, pt∈PT (9)

Decision variables

xs,f,t =

{
1 if fleet type f is assigned to a flight on segment s with departure time period t
0 otherwise

y−f,ap,t : Number of aircraft of fleet type f on the ground at airport ap just before period t.
y+f,ap,t : Number of aircraft of fleet type f on the ground at airport ap just after period t.
σ0
m,pt : Sum of the market shares of all itineraries of the other airlines and of the no-fly alternative

in market m for passenger type pt.
σi,pt,cl : Market share of passenger type pt, corresponding to the combination of itinerary i and fare class cl.

The full mathematical formulation is provided as follows:

Maximize
∑
m∈M

∑
i∈Im

∑
pt∈PT

∑
cl∈CL

(Demm,pt ∗Pi,cl ∗σi,pt,cl)−
∑
s∈S

∑
f∈F

∑
t∈T

(Opes,f ∗xs,f,t) (10)

subject to: Aircraft count constraints:∑
ap∈AP

y−f,ap,MinT +
∑

(s,t)∈FL

xs,f,t ≤Availf , ∀f ∈F , (11)

Flow balance constraints:

y−f,ap,MinT = y+f,ap,MaxT , ∀f ∈F , ap∈AP, (12)

y−f,ap,(t+1) = y+f,ap,t, ∀(f, ap, t)∈N , t 6=MaxT, (13)
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y−f,ap,t +
∑

s∈Sd(ap)

xs,f,D(s,t) = y+f,ap,t +
∑

s∈So(ap)

xs,f,t, ∀(f, ap, t)∈N , (14)

Demand and capacity constraints:

A0
m,pt ∗σi,pt,cl ≤Ai,pt,cl ∗σ0

m,pt, ∀i∈ Im,m∈M, pt∈PT , cl ∈ CL, (15)∑
m∈M

∑
pt∈PT

∑
cl∈CL

∑
i∈Ĩm,s,t

(Demm,pt ∗σi,pt,cl)≤
∑
f∈F

Capf ∗xs,f,t,∀s∈ S, t∈ T , (16)

Ã0
m,pt

A0
m,pt

∗σ0
m,pt +

∑
i∈Im

∑
cl∈CL

(
Ãi,pt,cl
Ai,pt,cl

∗σi,pt,cl

)
= 1, ∀m∈M, pt∈PT , (17)

Itinerary selection constraints:∑
f∈F

xs,f,t ≥ σi,pt,cl,∀i∈ Ĩm,s,t,m∈M, s∈ S, t∈ T , pt∈PT , cl ∈ CL, (18)

Restrictions on flight leg variables:∑
f∈F

xs,f,t ≤ 1, ∀s∈ S, t∈ T , (19)∑
t∈T

∑
f∈F

xs,f,t = Freqs, ∀s∈ S, (20)

Variable value constraints:

xs,f,t ∈ {0,1}, ∀s∈ S, f ∈F , t∈ T , (21)

y−f,ap,t, y
+
f,ap,t ∈Z+, ∀f ∈F , ap∈AP, t∈ T , (22)

σ0
m,pt ≥ 0, ∀m∈M, pt∈PT , (23)

σi,pt,cl ≥ 0, ∀i∈ Im,m∈M, pt∈PT , cl ∈ CL. (24)

Expression (10) formulates the model’s objective function of maximizing the total operating

profit of the airline, which is given by the total fare revenue (across all itineraries in all markets,

all passenger types and all fare classes) minus total cost of operating all scheduled flights (across

all segments, all fleet types and all departure time periods). The constraints are organized in six

categories. First, Constraints (11) are the aircraft availability constraint which limits the number

of assigned aircraft of each type to the available number in the airline’s fleet. The second category

includes flow balance constraints in the airline network. Because our model is a daily scheduling

model, Constraints (12) require that the number of aircraft on the ground at any airport at the

beginning of the day is equal to that at the end of the day. Constraints (13) and (14) ensure

the flow conservation of aircraft across the network of flights. Constraints (15) to (17) correspond

to the demand and capacity constraints, which belong to the third category of constraints. Con-

straints (15) define the market share of each itinerary-fare class combination to be proportional to

its attractiveness. This constraint embeds a linearized version of our discrete-choice model of pas-

sengers’ booking decisions, similarly to the approach from Wang et al. (2014). To see this, observe
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that it can be re-written as σi,pt,cl ≤
Ai,pt,cl∗σ0m,pt

A0
m,pt

. In the absence of aircraft capacity constraints, it

would split the demand across all itineraries based on their respective attractiveness according to

Equation (3). However, this is modified by Constraints (16), which ensure that the total number

of passengers assigned to all itineraries which use a particular flight does not exceed the capacity

of the aircraft type assigned to that flight. In other words, the inequalities in Constraints (15) let

passengers shift across itineraries based on the attractiveness values and aircraft capacity restric-

tions. Constraints (17) then ensure that the market shares across all alternatives (including the

itineraries from the other airlines and the no-fly alternative) sum up to 1. Fourth, Constraints (18)

state that no passenger can be assigned to an itinerary if any of its flight legs is not operated. Fifth,

Constraints (19) and (20) require each segment to be operated at most once per time period and

the total number of flights on each segment to be equal to the daily frequency for that segment.

Note that, in this formulation, daily flight frequency is given as an input to the model. We relax

this assumption in Section 6, where we integrate frequency planning decisions into our modeling

framework. Last, Constraints (21)-(24) define the domain of definition of the variables.

3. Solution Approach

The size of the mathematical model presented in Section 2 is extremely large for problem instances

corresponding to the networks of any real-world airlines. As the timetable is discretized into 15

minute time periods, the time window between 6 am and 12 am (midnight) includes 18× 4 = 72

time periods. Our largest case studies reported in this paper comprise instances with 299 segments

and 7 aircraft types resulting in 299× 7× 72 = 150,696 binary variables, each corresponding to a

combination of segment, fleet type and time period. As we shall see in our results, direct imple-

mentation of this model with commercial solvers does not provide good solutions (or sometimes

any solutions at all) in reasonable times, even upon fine-tuning and carefully optimizing the solver

parameters. In order to solve this large-scale problem, we have also implemented several well-

known, state-of-the-art integer programming solution approaches. However, this did not yield any

significant improvements either.

Thus, we propose, implement and demonstrate a new solution approach, as presented in Sub-

section 3.1, which decomposes the computations into multiple phases. Specifically, the first phase

aggregates multiple consecutive time periods at each airport, and aims only to identify the aggre-

gated time period of each flight. The second phase uses this solution as an input and identifies

a narrower time period when each individual flight will be scheduled. The third phase is simi-

lar to the second, but narrows the time period even further, etc. Additionally, we develop and

integrate two accelerated rule-based heuristic approaches into this multi-phase framework based

on variable-fixing and symmetry-inducing ideas. We refer to these heuristic approaches as a Fleet

Fixing approach and a Symmetry Inducing approach and present them in Subsection 3.2.
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3.1. Multi-Phase Solution Framework

This multi-phase framework is motivated by the fact that most airlines usually do not operate

more than one flight in any given segment of their network within a short continuous period of

time (with a length of, say, 60 minutes). We now describe a general version of the multi-phase

framework with the number of phases equal to N . Let the width of the time window corresponding

to phase i (i ∈ 1, . . . ,N) be Wi minutes and let Solutioni be the solution generated at the end of

phase i. In particular, we have WN = 15 minutes. Our multi-phase solution approach to optimize

the flight timetable step-by-step is presented as Algorithm 1.

Algorithm 1 Multi-phase solution algorithm

1: Initialization: i= 1.

2: Generate the input data to the MILP model (10)-(24) by setting the width of each time period

equal to W1.

3: Solve the MILP model (10)-(24), and store Solution1.

4: for i= 2, . . . ,N do

5: Generate input data to the MILP model (10)-(24) by setting the width of each time period

equal to Wi.

6: Add constraints to ensure consistency with Solutioni−1 (see Equation (25)).

7: Solve the MILP model (10)-(24) with these additional constraints, and store Solutioni.

8: end for

9: Return SolutionN .

We computationally tested several different variants of the general approach described in Algo-

rithm 1. The best performance was achieved when setting N = 2, W1 = 60 minutes and W2 = 15

minutes. In other words, we consider a two-phase approach. In Phase I we solve the model at the

hourly level, while in Phase II we use this timetable obtained as Phase I’s solution to identify

the exact 15 minute period for each flight. Let U be the set of 60-minute time periods, indexed

by u, and let τu denote the 15-minute period corresponding to the top of the hour u (e.g., if u

corresponds to the 8:00-9:00 am hour, then τu corresponds to the 8:00-8:15 am period). We denote

the assignment variables of the Phase I problem by x
(I)
s,f,u and those of the Phase II problem by

x
(II)
s,f,t. In Phase II we replace Constraint (19) with Constraint (25), which ensures that, in any hour,

a flight is scheduled in Phase II if and only if a flight is scheduled in that hour in Phase I.

3∑
i=0

∑
f∈F

x
(II)
s,f,τu+i

=
∑
f∈F

x
(I)
s,f,u, ∀s∈ S, u∈ U . (25)
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3.2. Rule-Based Accelerated Heuristic Strategies

We now present two acceleration strategies that, when implemented in combination with the multi-

phase solution framework, will be shown to considerably improve the computational performance

of the solution algorithm.

3.2.1. Fleet Fixing approach The central idea is to fix the fleet type assigned to each

flight leg at the Phase I optimal value rather than re-optimizing it in Phase II, thus considerably

reducing the number of binary decision variables in the Phase II model formulation. This allows the

Phase II model to focus exclusively on timetabling decisions under passenger choice while holding

fleet assignment decisions at their Phase I levels. While this does engender the possibility of sub-

optimality arising from the neglected potential enhancements from Phase II re-fleeting decisions,

it appears reasonable here given our particular emphasis on the timetabling decisions. Moreover,

feasibility of the fleet assignment solution is already guaranteed given the corresponding constraints

used when generating the Phase I solution. The results of our computational experiments presented

in Section 4 validate the hypothesis that the considerable computational benefits of this heuristic

approach more than offset the relatively smaller suboptimality risks. Mathematically, we replace

Constraint (25) with Constraint (26):

3∑
i=0

x
(II)
s,f,τu+i

= x
(I)
s,f,u, ∀s∈ S, f ∈F , u∈ U (26)

3.2.2. Symmetry Inducing approach The central idea is to require the number of flights

operated by any aircraft type on any segment to be equal to the number of flights operated by that

same aircraft type on the “reverse segment”, defined as the segment with the origin and destination

equal to the destination and origin, respectively, of the original segment. This idea reduces the

number of binary decision variables (i.e., the xs,f,t variables) by half. Similar to the Fleet Fixing

approach, it also generates the risk of suboptimality. However, real-world airline schedules are often

highly symmetric, suggesting that the computational benefits might again outweigh the risk of

suboptimality. Our computational results, presented in Section 4, support this hypothesis. Note

that, in addition to accelerating the solution procedure, the Symmetry Inducing approach has

additional practical benefits because it simplifies airline operations. Mathematically, if RS ⊂S×S

is the set of all unordered segment pairs such that the two segments in every pair are the reverse

segments of each other, then we enforce Constraint (27):∑
t∈T

xs,f,t =
∑
t∈T

xs′,f,t, ∀f ∈F , (s, s′)∈RS. (27)

Unlike the Fleet Fixing approach which only applies to Phase II, the Symmetry Inducing

approach can be added to Phase I, Phase II, or both. This results in eight potential combinations:
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applying the Symmetry Inducing approach or not in Phase I, applying the Symmetry Inducing

approach or not in Phase II, and applying the Fleet Fixing approach or not in Phase II. Seven of

these eight combinations are listed in Table 1. The one involving the Symmetry Inducing approach

in Phase II but not in Phase I as well as the Fleet Fixing approach in Phase II has been left out

because it will either result in infeasibility (if the Phase I decisions are not symmetric in terms of

the assigned fleet types) or be identical to Heuristic 7.

Table 1 Abbreviated description of each of the seven feasible combinations of heuristics

Heuristic 1 Heuristic 2 Heuristic 3 Heuristic 4 Heuristic 5 Heuristic 6 Heuristic 7

Phase I Symmetry Symmetry Symmetry Symmetry
Phase II Fixing Symmetry Symmetry Fixing Fixing, Symmetry

Note that, if each optimization problem was solved to optimality, Heuristics 5 and 7 should yield

identical optimal solutions because Phase II symmetry is guaranteed by the combination of the

Phase I Symmetry Inducing approach and the Phase II Fleet Fixing approach. However, explicit

application of the Symmetry Inducing approach in Phase II has an impact on the run-times and

memory requirements, and hence on the actual best solutions obtained within reasonable run-times.

Therefore, we retain both Heuristic 5 and Heuristic 7 in Table 1, rather than eliminating one of

them. Next, we test and compare the performances of all seven heuristics.

4. Computational Results

We implement the model and the solution approaches to several problem instances based on the

network of Alaska Airlines. Subsection 4.1 presents the computational setup used in the remainder

of this paper (unless otherwise specified). The first goal of the experiments reported in this section

is to compare the performances, within a given computational run-time budget, of our solution

framework and the various heuristic combinations listed in Table 1 with the performance of a

commercial MILP solver. This is presented in Subsection 4.2. The second goal is to analyze how

model’s solutions change over longer computational time horizons. This is shown in Subsection 4.3.

4.1. Experimental Setup

Our computational test instances are based on the network of Alaska Airlines. In our datasets,

obtained for year 2016, Alaska Airlines was a moderate-sized hub-and-spoke airline carrier in the

United States. In 2016, Alaska Airlines operated a mixed fleet consisting primarily of the Boeing 737

family aircraft. It operated its largest hub at Seattle, WA and two secondary hubs in Anchorage, AK

and Portland, OR. Alaska Airlines underwent a merger with Virgin America in 2017. As a result,

there are interesting opportunities to analyze the effects of the merger on the optimal timetables
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and fleet assignment solutions of the combined carrier using the model and algorithms developed

in this paper. We perform this analysis in Subsection 6.3.

We design a series of test instances increasing in size. We refer to these instances as Network 1

to Network 5—containing 5 to 59 airports. Table 2 reports the number of airports and flights in

each network and the corresponding sizes of the optimization model (Equations (10)-(24)).

Table 2 Descriptions of the five networks under consideration, and respective problem sizes.

# variables

Network # airports # flights continuous binary integer # constraints

Network 1 5 92 66,625 9,000 3,600 156,725
Network 2 7 126 130,585 17,640 5,040 290,015
Network 3 14 210 450,385 60,840 9,360 932,820
Network 4 17 232 1,066,000 144,000 14,400 2,140,005
Network 5 59 390 39,665,860 5,358,240 87,840 74,438,915

We now describe how the model’s input parameters can be obtained or approximated from

available public data sources and from the existing literature. First, the number of daily flights

in each nonstop segment, denoted as Freqs in our model, is computed as the average number of

flights per day operated in January 2016, obtained from the Airline On-Time Performance (AOTP)

database (Bureau of Transportation Statistics 2017a). The number of available aircraft of each fleet

type can be obtained from the carrier’s website. However, the publicly available numbers include

aircraft used for international flights (which are not included in our model) and aircraft undergoing

repair and maintenance; as such, they do not necessarily coincide with the actual numbers of

aircraft used for domestic flights. Therefore, we obtain the number of aircraft of each fleet type

used for domestic flights by Alaska Airlines in January 2016 by assigning each tail number to a

fleet type, and computing the number of aircraft operating daily for each fleet type. We set the

earliest departure time (MinT ) at 6 am and the latest departure time (MaxT ) at 12 am, since over

98% of Alaska Airlines’ flights are scheduled to depart between 6 am and 12 am. We only consider

nonstop and one-stop itineraries in this paper, which together account for 97.5% of the one-way

air passenger trips in the United States (Barnhart et al. 2014). Minimum aircraft turnaround

times are all assumed to be 45 minutes. To construct connecting itineraries, we consider passenger

connection times within the range of 45 to 180 minutes. We do not consider interline connections

(that is, a connection from a first-leg flight flown by the host carrier and a second-leg flight flown

by another airline, or vice versa). In practice, these assumptions can be easily relaxed depending

on the practical requirements. For instance, minimum aircraft and passenger connection times can

be varied as a function of the airport and the time of day; in addition, circuity can be used to

reduce the number of feasible itineraries that are generated.
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We use the estimates of flight operating costs from Swan and Adler (2006) to calibrate the

parameter Opes,f as a function of segment distance (Ds) and aircraft capacity (Capf ). Equations

(28) and (29) describe this relationship for short-haul flights (defined as those on segments of less

than 3,106 Miles, or 5,000 Kilometers in length) and long-haul flights (defined as those on all other

segments), respectively.

Opts,f = (1.6Ds + 722) ∗ (Capf + 104) ∗ $0.0190 if Ds ≤ 3,106 miles (28)

Opts,f = (1.6Ds + 2200) ∗ (Capf + 211) ∗ $0.0115 if Ds > 3,106 miles (29)

The airfares used as inputs to our model are computed, using the Airline Origin and Destination

Survey (DB1B) data from the Bureau of Transportation Statistics (2017b), as the average ticket

price values for each combination of year, quarter, origin airport, destination airport, connection

airport (if any), first leg carrier, and second leg carrier (if any). Note that we use quarterly average

values because ticket price information at a finer granularity is not available publicly. However, the

airlines (the intended users of our methodology) do have access to such information for their own

flights, and also typically for the flights of their competitors (at least in an approximate manner).

Our methodology is able to accommodate such departure-time-dependent price values whenever

such data is available.

We obtain passenger demand data on each O-D market from the DB1B database, which we use

to define our parameters Demm,pt. We calibrate our GAM model of passenger choice (Equations (4)

to (9)) as follows. For simplicity, we first assume only one passenger type and one fare-class. This

means that the set PT of passenger types and the set CL of fare clases are both singletons. Exten-

sions involving multiple passenger types and multiple fare classes are presented in Subsection 6.1.

For each itinerary (from the host airline as well as other airlines), we compute the corresponding

utility values using the empirical specification from Lurkin (2016)—as mentioned earlier, the cor-

responding attributes are: total trip time, number of connections, departure time of the day, ticket

price, distance of the itinerary, direction of travel, number of time zones crossed and departure day

of the week. Given the lack of available data and research studies on the attractiveness of the no-fly

alternative, we ignore this term in our GAM specification. Note that this assumption is reasonable

since our demand estimates correspond to the actual number of flying passengers, and does not

include latent not-flown demand. We have conducted a detailed numerical investigation into the

effects of this assumption, and concluded that this choice does not change our conclusions to any

significant extent. Finally, in the absence of the availability of accurate empirical estimates, we set

all the shadow attractiveness values to 0. This, once again is a limitation arising from the fact that

we don’t have access to proprietary passenger booking data (though the airlines do have access
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to it), which will allow estimating the shadow attractiveness values using the maximum likelihood

estimation and least squares methods as mentioned in Subsection 2.1 (Gallego et al. 2015).

All experiments reported in this paper are performed on a server with 128GB of RAM and Linux

Operating System. We implement the algorithms using Java along with the latest version of the

CPLEX MILP solver - CPLEX 12.7 - with default parameter settings.

4.2. Comparison of Heuristics

In this section, we evaluate and compare the computational performance of the multi-phase solution

approach and the different heuristics presented in Section 3. Results are reported in Table 3. For

each of the five networks, we consider two baselines obtained by implementing the model directly

in CPLEX without any of the solution approaches or heuristic ideas introduced in Section 3. First,

“CPLEX Short” corresponds to the solution obtained after a relatively short run-time (fixed at

two hours here). Second, “CPLEX Long” corresponds to the solution obtained after a longer run-

time of 48 hours. This essentially provides the best solution that can be obtained directly with a

commercial solver. For each of our seven heuristics (referred to as “H 1” to “H 7”), the run-time

limit is set at one hour for Phase I plus one hour for Phase II, resulting in a two-hour total run-

time limit which makes it comparable with the “CPLEX Short” results. In Table 3, we use the

“CPLEX Long” solution as the baseline against which all other results are evaluated. The results

indicate the percentage improvement in operating profit for each approach when compared to the

“CPLEX Long” baseline. In other words, for each solution approach and each test instance, the

table reports the % gap defined as O−O∗
O∗ , where O is the objective function value obtained by

that particular solution approach and O∗ is the corresponding objective function value obtained

by directly running CPLEX for 48 hours. Thus, any positive results in Table 3 indicate that the

particular solution approach results in a larger operating profit value than can be obtained directly

with CPLEX even after running it for a much longer time.

Table 3 Relative performance of each solution approach, as compared to the “CPLEX Long” solution

Problem CPLEX Our Heuristics
Short Long H 1 H 2 H 3 H 4 H 5 H 6 H 7

Network 1 -3.58% 0% 0.20% 0.59% -5.87% -0.98% 0.54% -6.32% 0.28%
Network 2 -12.21% 0% 2.05% 2.81% 2.32% 2.51% 3.25% 2.16% 1.94%
Network 3 -11.03% 0% -0.43% -1.74% -0.96% -0.93% -1.82% -1.19% -1.82%
Network 4 -16.98% 0% -5.88% -3.51% -3.14% -2.80% -3.51% -3.07% -3.50%
Network 5 No solution 0% 25.72% 21.08% 25.08% 42.82% 40.59% 42.11% 40.39%

The main takeaway from Table 3 is that the combination of our multi-phase solution approach

and the acceleration heuristics provide high-quality and scalable solutions, as compared to a direct
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CPLEX implementation. For the smallest instance (Network 1), four of our seven heuristics (Heuris-

tics 1, 2, 5 and 7) outperform a direct CPLEX implementation, even when our approaches are

run for only two hours while CPLEX is allowed to run for 48 hours. Additionally, Heuristic 4 also

outperforms the CPLEX solution with comparable run-times (i.e., two hours). The improvements

relative to a direct CPLEX implementation are far more dramatic under Networks 2, 3, 4 and

5, which are larger in size. For these four larger instances, each of our seven heuristics performs

substantially better than running CPLEX directly for the same amount of run-time (i.e. for two

hours). Typically, the larger the size of the network, the bigger and more obvious is the improve-

ment (barring the better-than-expected performance of our heuristics on Network 2). For the entire

domestic network of Alaska Airlines (i.e. Network 5), CPLEX does not generate even a feasible

solution within two hours. In contrast, all seven of our heuristics produce an improvement of 20%

to 40% within a two hour run-time when compared with the CPLEX implementation run for 48

hours. In summary, all seven of our heuristics outperform a direct CPLEX implementation within

a much lower run-time budget for the largest network.

Next, let us compare the relative performance of the seven heuristics with each other, with a

particular focus on Network 5. Our heuristics that apply the Symmetry Inducing approach in Phase

I (Heuristics 4 to 7) (42.82%, 40.59%, 42.11%, 40.39%) significantly outperform those that do

not (Heuristics 1 to 3) (25.72%, 21.08%, 25.08%). This suggests that the Symmetry Inducing

approach can greatly improve the solution quality in Phase I and thus lead to a superior final

solution. This result further validates the effectiveness of the symmetry-inducing heuristic.

4.3. Evolution of Objective Function Values With Increasing Run-Times

When we implement our model directly in CPLEX for Network 5, we observe that the best available

solution improves very slowly. Specifically, an initial feasible solution is found after little more than

two hours, but further improvement is then very small (less than 1%) even after running the solver

for up to 15 hours. In contrast, our heuristics improve the solution quality much sooner as we

increase their run-time beyond two hours. Thus, it is insightful to plot side-by-side the performance

of our heuristics in terms of the evolution of the objective function values of the best available

solutions against their run-times. The results shown here are based on the entire domestic network

of Alaska Airlines (Network 5) as the test instance and Heuristic 4 as the solution approach, which

was the best solution approach based on the results from Table 3.

Figure 2 presents two horizontal lines and four curves. The black horizontal line corresponds to

the objective function value obtained by the direct CPLEX implementation after it is run for 48

hours. The green horizontal line corresponds to the objective function value obtained by running

our Heuristic 4 for 24 hours in Phase I and then running its Phase II until it runs out of memory
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Figure 2 Evolution of the objective function value versus run-time (obtained with Heuristic 4 on Network 5)
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(i.e., for 1.5 hour in this case). Each curve corresponds to a different Phase I run-time (namely,

half hour, 1 hour, 2 hours, and 4 hours) for our Heuristic 4. The x-axis corresponds to the total

run-time of the overall heuristic (combining the Phase I and Phase II run-times) and the y-axis

corresponds to the objective function value corresponding to the best available solution. For each

curve, we plot the objective function value until the computer runs out of memory.

First, the blue curve demonstrates that our heuristic generates a substantially better solution,

in less than one hour of run-time, compared to the solution obtained by a direct CPLEX imple-

mentation with a 48 hours run-time. In most cases, as the run-time increases, the solution quality

increases and the improvements happen in jumps as and when a better solution than the previous

one is obtained by the solver. However, in most cases, the solution quality improvements taper

off after a certain point in time, which is an indicator of the quality of the corresponding Phase

I solution. We observe that each of the four curves ends because the Phase II model eventually

runs out of memory approximately two hours after Phase II begins. In addition, a longer Phase

I run-time leads to better quality of the eventual Phase II solution. This makes sense because a

longer Phase I run-time allows for a better chance to find a superior solution, which serves as a

better starting point for the Phase II model. Note that this relationship is non-linear though. For

example, the curves corresponding to one hour and two hour Phase I run-times have the same

ultimate objective function value, which means that the additional hour spent in Phase I does not

help in finding a better eventual solution. In contrast, increasing the Phase I run-time from two

hours to four hours results in a significant improvement in the ultimate profit value. In fact, the
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solution obtained after a four-hour run-time in Phase I is within 5% of the one obtained with a

24-hour run-time in Phase I, which indicates the quality of our heuristics in terms of generating

high-quality solutions in reasonable computational times.

These results provide valuable insights into the quality of our solution approach. Indeed, even

with a much shorter run-time (two hours), our solution approach generates a solution that yields

a profit improvement of over 40% when compared with the solution obtained by a direct CPLEX

implementation that runs for 48 hours. One of the main contributors to these high-quality solu-

tions is the application of the Symmetry Inducing approach in Phase I. These results underscore

the benefits that can be derived from the model developed in this paper in support of airline

timetabling. In addition, they also highlight the tradeoff between the run-time and the quality

of the generated solution. In particular, a noteworthy aspect of Figure 2 is that each of the four

curves experiences a sudden and significant jump within the first half hour of Phase II run-time.

In general, timetabling problems are strategic in nature and hence allow for large budgets of com-

putational times. However, these jumps indicate that, in the event that the run-time budget is

somewhat limited, even a half hour Phase II run-time can yield a good solution. This ability to

quickly generate a high-quality timetable can be highly valuable to airlines even in the strategic

context of flight timetabling, as it enables repeated runs of the model solution process to conduct

sensitivity analyses and scenario analyses as part of the long-term decision-making processes.

5. Benefits of Timetabling

The mathematical modeling and computational framework for comprehensive timetable develop-

ment that integrates fleet assignment decisions and passengers’ booking decisions developed in this

paper differs from existing approaches in two major ways. First, existing schedule design mod-

els consider a feasible flight timetable as a starting point, and perform incremental changes to it

to determine the new timetable. Second, the airline planning process is typically conducted in a

sequential rather than an integrated manner. In other words, (incremental) timetable development

takes place first, and then, fleet assignment decisions are optimized using the previously determined

timetable as an input. In this section, we compare our integrated approach to these various existing

approaches that have been presented in the previous literature and/or used in practice.

5.1. Experimental Setup

We aim to evaluate the benefits of our modeling and computational framework by comparing it

to a number of baselines. As the first baseline, we use our passenger choice model to evaluate the

operating profits corresponding to the actual timetable and the actual fleet assignment solution

used by the airline. This implies fixing all timetabling and fleet assignment decision variables



Wei, Vaze, and Jacquillat: Airline Timetable Development and Fleet Assignment
25

at their real-world values, and replicating passengers’ booking decisions for these specific flight

offerings. We designate this as Baseline 0.

Next, we consider the various incremental models replicating the approaches presented in the

literature. We design three baselines (Baseline 1, Baseline 2 and Baseline 3 ) corresponding to

different levels of incremental changes in the airline planning process. In Baseline 1, we only

optimize the fleet assignment decisions (i.e., assigning aircraft types to all flight legs to maximize

the total operating profits) while holding the timetabling decisions fixed at their real-world values.

This aims to replicate many past studies (e.g., (Barnhart et al. 2002)), which have focussed on the

fleet assignment problem with passenger spill and recapture effects. By comparing the operating

profits corresponding to Baseline 1 with those corresponding to Baseline 0, we evaluate the benefits

of optimal fleet assignment decisions alone, while incorporating passenger choice.

Then, the focus of Baseline 2 is to measure the combined effects of optimizing fleet assignment

decisions and incremental changes in flight timings. This is motivated by the results from Sherali

et al. (2013a), which suggest that incremental changes to flight departure times can create more

connection opportunities for passengers. Specifically, we develop two baselines, referred to as Base-

line 2-a and Baseline 2-b, both of which combine the fleet assignment problem with the problem

of flight re-timing within designated time windows. Time windows in Baseline 2-a are 30 minutes

in width (i.e., the departure time of each flight is allowed to be modified by at most 15 minutes in

either direction), while those in Baseline 2-b are 60 minutes in width (i.e., the departure time of

each flight is allowed to be modified by at most 30 minutes in either direction).

Next, in addition to optimizing fleet assignment and flight re-timing decisions within designated

time windows, Baseline 3 also allows elimination of any subset of the flights designated as optional.

This follows multiple previous research studies (e.g., Lohatepanont and Barnhart (2004), Sherali

et al. (2010)) that designate flights as either mandatory or optional, thus allowing the optimiza-

tion model to consider eliminating some of the flights designated as optional. To the best of our

knowledge, none of the existing studies in the literature provides any guidance regarding how to

designate any given flight as mandatory or optional. For our experiments under Baseline 3 we des-

ignate all Hub-to-Hub flights as optional. But in order to maintain consistency across our results,

we ensure that the total daily frequency in each nonstop segment (including the Hub-to-Hub seg-

ments) remains constant. Specifically, on each Hub-to-Hub segment, we generate one additional

flight at the “midpoint” of any pair of two consecutive flights, and label all Hub-to-Hub flights as

optional. For instance, if on a given segment an airline has two flights scheduled to depart at 2

pm and 6 pm, respectively, then we include in our model a total of five optional flights on that

segment with proposed scheduled departure times of 10 am (the midpoint of 6 am and 2 pm), 2

pm (the other departure time currently offered), 4 pm (the midpoint of 2 pm and 6 pm), 6 pm (one
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of the currently offered departure times) and 9 pm (the midpoint of 6 pm and 12 am). Ultimately,

the ratio of the total number of optional flights to the number of optional flights to be selected on

each Hub-to-Hub segment is slightly higher than 2:1. Similar to Baseline 2, we also divide Baseline

3 into two different experiments: Baseline 3-a has a 30-minute wide time window for each flight

(e.g., the aforementioned five flights can be scheduled any time during 9:45-10:15 am, 1:45-2:15 pm,

3:45-4:15 pm, 5:45-6:15 pm, and 8:45-9:15 pm, respectively), while Baseline 3-b has a 60-minute

wide time window for each flight (e.g., the aforementioned five flights can be scheduled any time

during 9:30-10:30 am, 1:30-2:30 pm, 3:30-4:30 pm, 5:30-6:30 pm, and 8:30-9:30 pm, respectively).

We solve each of these six baseline cases (Baselines 0, 1, 2-a, 2-b, 3-a, 3-b) by implementing

them directly in CPLEX. We compare the results of these with the outputs of our heuristics for

solving our model formulation given by (11)-(24). Additionally, we also compare them with the

solution obtained by running for 48 hours a direct CPLEX implementation of our model formulation

given by (11)-(24) (referred to as CPLEX Directly). In order to ensure a fair comparison of the

results, we run each model for a total run-time of 48 hours. Our heuristics are allowed to run for

a maximum of 24 hours of Phase I run-time and a maximum of 24 hours of Phase II run-time (or

until it runs out of memory). Baseline 0 and Baseline 1 are successfully solved to their respective

optimal solutions within the 48 hours of their allocated run-time. But provably optimal solution

for Baselines 2-a, 2-b, 3-a, 3-b was not obtained within 48 hours of run-time. In addition to this

so-called cold start solution approach, we also experimented by using a warm start approach. The

general idea of a warm start is to help CPLEX by providing an existing (hopefully good) feasible

solution as a starting point. Specifically, in an attempt to generate a better solution for Baseline

2-a, we initialize it with the optimal solution from Baseline 1. Similarly, we warm-start Baseline 2-b

and Baseline 3-a both with the best available solution from Baseline 2-a, we warm-start Baseline

3-b with the best available solution from Baseline 2-b, and we warm-start CPLEX Directly with

the best available solution from Baseline 3-b. Each of these warm starts leverages provably feasible

solutions obtained from previous problem implementations. No warm start strategy is used when

implementing the heuristic solution approaches developed in this paper.

Note that there is no guarantee that any warm start approach produces a better solution than a

cold start approach. In fact, for both Baseline 2-a and Baseline 2-b, we found that the warm-start

solutions are inferior to their corresponding cold start solutions, while in all other comparisons,

warm start solutions were found to be superior to the cold start solutions. For example, the cold

start solution of Baseline 3-b is even worse than the best available solution for Baseline 2-b, but its

warm start Baseline 3-b is considerably better. When it comes to the CPLEX Directly approach,

a cold start implementation of our model does not even yield a feasible solution within 48 hours.

In contrast, warm start at least guarantees that its solution is not inferior to the best available
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solution of Baseline 3-b. In the remainder of this section, we report, for all baselines and for the

CPLEX Directly approach, the results obtained by using the warm start or the cold start, whichever

produces a superior solution.

5.2. Benefits of our Modeling and Computational Framework

Table 4 reports the profit generated by each of the baseline approaches, the CPLEX Directly

approach, and two of our heuristics. These results correspond to the test instance corresponding to

the full domestic network of Alaska Airlines (Network 5). For simplicity and to save some space,

we only report the results obtained with the heuristic that performs the best (Heuristic 5, here)

and the one that performs the worst (Heuristic 6, here) among Heuristics 4-7, which were shown

in Table 3 to be the better-performing ones. Note that the relative performance of the heuristics

is different from the one elicited in Table 3, because Table 3 reported results obtained with a one-

hour run-time in each phase, while we allow here for a run-time of up to 24 hours in each phase.

Moreover, the worst-performing heuristic among Heuristics 4-7 (Heuristic 6) is the only one that

does not ensure symmetry in the Phase II solution (see Table 1) either through explicit induction

of symmetry or through fixing of fleet types in Phase II or both. This further emphasizes the

benefits of our Symmetry Inducing approach, not only in Phase I but also in Phase II. For each

of these tests, Table 4 presents a variety of summary statistics characterizing operating profits,

revenues and costs. The numbers in parentheses provide changes in comparisons to Baseline 0.

They are calculated as z∗−z0
z0

, where z∗ is the value of the relevant statistic for the solution under

consideration and z0 is the corresponding value for the solution obtained with Baseline 0.

As expected, the profit values are found to increase when transitioning from each baseline to

the next, as the solution space is progressively expanded to allow for additional flexibility in the

flight timetabling and fleet assignment processes. Then, note that when we use Baseline 3-b’s best

available solution to initialize the direct CPLEX implementation of our model formulation, that

solution still remains the best available solution even after running CPLEX for 48 hours. In con-

trast, the implementation of any of our four heuristics (even the one that performs the worst)

results in a larger profit value than the best available baseline. Further profit improvements can

be achieved through the implementation of the heuristics that perform better. In summary, the

rank ordering of the various solutions listed in Table 4 based on their operating profits is Baseline

0< Baseline 1< Baseline 2-a < Baseline 3-a < Baseline 2-b < Baseline 3-b = CPLEX Directly

< Worst heuristic < Best heuristic. These results suggest that the combination of our integrated

comprehensive timetabling and fleet assignment formulation and our solution approaches can pro-

vide significant profit improvements, as compared to all existing approaches. We now compare the

solutions obtained under each modeling and solution approach in more detail.
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Table 4 Benefits of our approach compared to various baselines

Profit ($)
Revenue Operating Number of Passengers

Total ($) Nonstop ($) One-stop ($) Cost Nonstop One-stop

Baseline 0
3,125,862 9,085,984 7,453,217 1,632,766 5,960,139 33,637 7,288

(0%) (0%) (0%) (0%) (0%) (0%) (0%)

Baseline 1
3,451,808 9,267,774 7,600,360 1,667,414 5,816,174 34,259 7,444

(+10.46%) (+2.00%) (+1.97%) (+2.12%) (-2.42%) (+1.85%) (+2.14%)

Baseline 2-a
3,823,542 9,664,902 7,547,487 2,155,916 5,879,861 34,134 9,076

(+22.36%) (+6.37%) (+1.26%) (+32.04%) (-1.35%) (+1.48%) (+24.53%)

Baseline 2-b
4,085,654 9,981,443 7,396,392 2,585,051 5,895,790 33,450 10,305

(+30.75%) (+9.86%) (-0.76%) (+58.32%) (-1.08%) (-0.56%) (+41.40%)

Baseline 3-a
3,913,461 9,788,934 7,512,856 2,276,078 5,875,979 33,890 9,546

(+25.24%) (+7.74%) (+0.80%) (+39.40%) (-1.41%) (+0.75%) (+30.98%)

Baseline 3-b
4,138,876 10,038,133 7,426,230 2,612,097 5,899,452 33,576 10,539

(+32.45%) (+10.48%) (-0.36%) (+59.98%) (-1.02%) (-0.18%) (+44.61%)

CPLEX Directly
4,138,876 10,038,133 7,426,230 2,612097 5,899,452 33,576 10,539

(+32.45%) (+10.48%) (-0.36%) (+59.98%) (-1.02%) (-0.18%) (+44.61%)

Heuristic 6 (worst)
4,312,706 10,259,745 7,431,617 2,828,218 5,947,039 33,696 10,916

(+38.01%) (+12.92%) (-0.29%) (+73.22%) (-0.21%) (+0.17%) (+39.78%)

Heuristic 5 (best)
4,903,946 10,838,131 7,505,688 3,332,443 5,934,645 34,165 12,484

(+56.93%) (+19.28%) (+0.70%) (+104.10%) (-0.43%) (+1.57%) (+71.30%)

First, compared to Baseline 0, Baseline 1 allows capturing more passengers and hence more

revenue in certain markets by allocating larger aircraft. The total number of passengers being

carried increases from 40,925 to 41,703 (a 1.90% increase) leading to an increase in total revenue

from $9,085,984 to $9,267,774 (a 2% increase). Additionally, it also assigns smaller aircraft to

certain other flights with empty seats leading to a reduction in the operating cost from $5,960,139 to

$5,816,174 (a 2.42% decrease). Thus, through fleet assignment optimization in Baseline 1, operating

profit increases from $3,125,862 to $3,451,808 (a 10% increase).

Compared to Baseline 1, Baseline 2-a allows adjusting flight departure times within time win-

dows of ±15 minutes. While the number of nonstop passengers decreases slightly (by 125 from

34,259 to 34,134) when compared to Baseline 1, the number of one-stop passengers increases sig-

nificantly from 7,444 to 9,076 leading to a $488,502 increase in one-stop revenue. This is further

amplified in Baseline 2-b which allows adjusting flight departure times within time windows of ±30

minutes. This results in the number of one-stop passengers increasing to $10,305 but in the num-

ber of nonstop passengers decreasing to $33,450. The one-stop revenue improvement in Baseline

2-b leads to a further profit increase. These effects stem from small departure time adjustments

that result in slightly less attractive scheduled times for nonstop passengers, but generate more

connection opportunities for one-stop passengers.

Going from Baseline 2-a to Baseline 3-a, and from Baseline 2-b to Baseline 3-b, the optional

flights on Hub-to-Hub segments afford additional timetabling flexibility. These result in an increase
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in the number of one-stop passengers (by 470 and 234 respectively), and a corresponding increase

in one-stop revenues. As a result, the total profit increases by $89,919 and $53,222 respectively. The

difference is likely because the ±30 minutes time windows in case of Baseline 2-b already provide

significant scheduling flexibility, so the additional gains by allowing optional flights in Baseline 3-b

are more modest than those obtained by moving from Baseline 2-a to Baseline 3-a.

The last three rows list the results generated by a direct CPLEX implementation and our heuris-

tics for solving our model formulation. As noted earlier, the direct CPLEX implementation of our

model formulation does not improve on the solution provided by Baseline 3-b even after 48 hours.

In contrast, the results obtained with any our heuristics yield significant profit improvements over

all baseline solutions. Particularly noteworthy is the fact that our heuristics presented in Table 4

have nonstop revenues that are very similar to (or sometimes even lower than) the various baselines

being considered. Moreover, the operating costs of the solutions from our heuristics are actually

slightly higher than all baselines except for Baseline 0. However, the solutions given by our heuris-

tics have significantly greater one-stop revenues compared to all the baselines. This highlights the

fact that most of the benefits from our approaches are derived from an increase in the availability

of attractive one-stop itineraries. All the baseline approaches ranging from Baseline 0 to Base-

line 3-b, either do no allow timetabling changes or allow only for certain marginal changes. This

limits the airline’s ability to provide flight offerings that enable passengers to choose their most

desired one-stop itineraries. In contrast, our model’s flexibility due to its comprehensive approach

to timetabling, and its explicit capture of passenger choice decisions allows it to increase the num-

ber of one-stop passengers, and consequently the total one-stop revenue and the total operating

profit, dramatically. In addition to increased profitability, the additional one-stop passenger cap-

ture also enhances the airline’s market share significantly —an added advantage of our approach.

In conclusion, the combination of our formulation of the comprehensive integrated timetabling and

fleet assignment optimization model with passenger choice with our heuristic solution approaches

produces the solutions with, by far, the highest operating profits and market shares.

5.3. Comparison with Actual Timetable

We conclude this section with a comparison of the solution generated by our modeling and com-

putational framework to the actual timetable produced by Alaska Airlines in 2016. Unfortunately,

a full apples-to-apples comparison is not possible, since our modeling approach necessarily omits

a number of practical considerations that play a role in the development of the airline’s actual

timetable. We thus only report aggregate metrics in Table 5; nonetheless, the comparison sheds

light on the main differences between the model’s solution and the actual solution.
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Table 5 Comparison of model solution to actual timetable

Metric Segment Actual Model

Number of seats Hub-Hub 8,539 8,129
Hub-Spoke 38,435 38,435
Spoke-Hub 38,373 38,783
Spoke-Spoke 9,757 9,757
Total 95,104 95,104

Number of nonstop passengers Hub-Hub 661 665
Hub-Spoke 14,408 14,615
Spoke-Hub 14,605 14,597
Spoke-Spoke 3,963 4,288
Total 33,637 34,165

Number of connection opportunities Hub-Hub-Hub 8 12
Spoke-Hub-Spoke 1,707 2,714
Hub-Hub-Spoke 147 286
Spoke-Hub-Hub 252 275
Total 2,114 3,287

Number of connecting passengers Hub-Hub-Hub 153 194
Spoke-Hub-Spoke 4,754 9,185
Hub-Hub-Spoke 1,304 1,604
Spoke-Hub-Hub 1,077 1,501
Total 7,288 12,484

The observations from Table 5 are threefold. First, on the supply side, the model re-allocates

some of the aircraft seats from Hub-Hub segments to Spoke-Hub segments. Interestingly, the num-

ber of nonstop passengers on Spoke-Hub segments is actually slightly lower in our solution; this

suggests that the added seats on Spoke-Hub segments aim to increase connectivity into the host air-

line’s Hub airports. Obviously, the solutions also differ in terms of timetabling, which is not shown

here. Second, the model results in a slight increase in the total number of nonstop passengers—by

an estimated 1.57%. This is mainly driven by an 8.2% increase in the number of nonstop passen-

gers on Spoke-Spoke segments. This is primarily achieved by aligning flight timetables with the

(estimated) profiles of passenger demand. Third, the main difference between the two timetables

lies in the dramatic increase in the number of connection opportunities, and the resulting num-

ber of connecting passengers. Interestingly, the percentage increase in the number of connecting

passengers is even larger than the percentage increase in the number of connection opportunities,

suggesting positive ripple effects of network connectivity.

These findings highlight the main drivers of network-wide timetable optimization, namely (i)

the alignment of each flight’s timetable with the patterns of nonstop passenger demand, and (ii)

the coordination of flight timetables across multiple segments to enhance connection opportunities

and cater to higher numbers of connecting passengers.
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6. Extensions

We now propose a number of modeling, computational and practical extensions of our approach,

using the full domestic network of Alaska Airlines. This aims to provide additional insights into the

benefits of the model developed in this paper and to characterize the optimal scheduling strategies

for major airlines. First, in Subsection 6.1, we perform additional computational experiments with

multiple passenger types (e.g., business and leisure) and multiple fare classes. While all results

presented so far in this paper have been based on instances involving a single passenger type and

a single fare class, the optimization formulation (Equations (10)-(24)) and the solution heuristics

make no such assumption. Therefore, we can use our modeling and computational framework to

capture the fact that airlines offer multiple fare classes and cater to passengers with different

sensitivities to the itinerary attributes such as price, departure time, etc. Second, in Subsection 6.2,

we extend our modeling and computational framework to integrate frequency planning decisions

into our timetable development and fleet assignment framework. This is motivated by the significant

impact of frequency planning decisions on an airline’s profit and the strong interdependencies of

frequency planning decisions with timetable development, fleet assignment and passenger choice.

Last, the recent merger between Alaska Airlines and Virgin America is expected to have an impact

on various aspects of the new merged airline’s network, schedules and operations. We use our

framework to analyze the effects of this merger on their optimal flight schedules in Subsection 6.3.

Throughout this section, we compare the results using our modeling and computational frame-

work in different test instances. Unlike the previous sections, the focus is less on the comparison of

our various heuristics with each other and with various baselines. Instead, we tested all heuristics

in Subsection 6.1, and found that Heuristic 7 is best one among all seven heuristics (i.e., the one

that leads to the highest profit value) when tested with a run-time of 24 hours in Phase I and 24

hours in Phase II (or until it runs out of memory). Thus, we choose Heuristic 7 as the solution

approach in this section to analyze these extensions.

6.1. Effects of Multiple Passenger Types and Multiple Fare Classes

So far, as a simplification, our computational experiments have only considered one passenger type

and one fare class. In reality, passengers differ in terms of the relative value that they place on

different itinerary attributes. For example, business travelers typically place a higher emphasis on

schedule convenience and flexibility, while those flying for leisure purposes are often more price

sensitive. Airlines, in turn, are also known to offer various fare classes, through different marketing

and sales channels, during various time periods prior to the scheduled flight departure time, in an

attempt to price different passengers differently. Detailed modeling of airline pricing and revenue

management strategies is considerably beyond the scope of this paper, not only because of the



Wei, Vaze, and Jacquillat: Airline Timetable Development and Fleet Assignment
32

prohibitive mathematical modeling burden of tackling such analysis but also because of the lack of

any public source of the relevant pricing and revenue management data. Instead, in this section,

we test our model with multiple passengers types (market segmentation) and multiple fare classes

(differential pricing) to evaluate its potential to handle more complex pricing scenarios if such data

were available. Given this relatively modest goal, we introduce three new parameters K1, K2 and

K3 to simulate various hypothetical segmentation and pricing scenarios.

Specifically, we make the simplified assumption that passengers are divided into two categories

(business and leisure travelers), that the proportion of business travelers is identical across all

markets, and that the airline offers only two fare classes. K1 quantifies the fare differences across

the two fare classes. Let us define High Fare = µ+K1σ and Low Fare = µ−K1σ, where µ and σ

denote the average and standard deviation of the fares for each combination of year, quarter, origin

airport, destination airport, connection airport (if any), first leg carrier, and second leg carrier

(if any) as obtained from the Bureau of Transportation Statistics (2017b). K2 is defined as the

fraction of passengers that belong to the category of business passengers in every market (so 1−K2

is the fraction belonging to the category of leisure passengers). K3 ≥ 1 distinguishes between the

utility functions of business and leisure passengers (Equation (4)). Particularly, business passengers

are assumed to be willing to pay higher fares in return for more convenience. We capture this by

multiplying by K3 the original parameters (βi,pt,cl) corresponding to departure time of the day,

total trip time and number of connections, and by multiplying by 1
K3

the original parameter of

ticket price. In contrast, leisure passengers have a lower willingness to pay, but are more willing

to accept longer travel times and more connections, and are less sensitive to departure time of

the day. So we capture this by multiplying by 1
K3

the original parameters (βi,pt,cl) corresponding

to departure time of the day, total trip time and number of connections, and by multiplying by

K3 the original parameter of ticket price. Note that K1 captures the airline’s pricing and revenue

management decisions, while K2 and K3 are parameters characterizing the passenger mix and the

extent of heterogeneity of preferences across passenger types, respectively.

Table 6 reports various statistics about the solutions obtained with Heuristic 7 for various com-

binations of parameters K1, K2 and K3 in the following ranges: 0≤K1 ≤ 2.5, 0.25≤K2 ≤ 0.75 and

1≤K3 ≤ 3. Results related to the business passengers who are estimated by the model to purchase

a High Fare ticket are reported in the column titled “Business - High Fare”, and analogous def-

initions follow for the columns titled “Business - Low Fare”, “Leisure - High Fare” and “Leisure

- Low Fare”. Note that there is no one-to-one mapping between the passenger type (business vs.

leisure) and the fare class (high fare vs. low fare) due to the airline’s inability to implement perfect

price discrimination. For each group, we also report the airline’s market share in the corresponding
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Table 6 Market share (“MS”) and revenue with two passenger types and two fare classes

K1,K2,K3 Profit ($)
Business - High Fare Business - Low Fare Leisure - High Fare Leisure - Low Fare

MS (%) Revenue ($) MS (%) Revenue ($) MS (%) Revenue ($) MS (%) Revenue ($)

1 0, 0.5, 1 5,126,077 27.7 2,586,802 28.3 2,572,984 29.2 2,613,427 26.6 2,559,731

2 0, 0.5, 2 5,464,520 32.0 2,825,312 31.5 2,792,126 25.2 2,177,928 25.3 2,176,134
3 0.5, 0.5, 2 6,204,507 66.9 7,542,689 2.6 426,659 18.5 2,266,630 16.7 1,155,479
4 1, 0.5, 2 7,677,795 71.2 10,088,041 0.3 304,903 9.0 1,656,606 15.5 694,036
5 1.5, 0.5, 2 8,941,834 70.0 12,132,213 0.1 263,742 4.4 1,296,431 13.4 403,797
6 2, 0.5, 2 9,570,268 70.3 13,175,734 0.01 226,523 2.1 1,027,068 12.5 280,414
7 2.5, 0.5, 2 9,104,495 68.4 11,746,180 ≤ 0.01 112,976 1.1 563,873 12.4 201,961

8 1.5, 0.25, 2 3,197,389 68.2 5,613,404 0 69,189 3.6 1,888,882 19.5 768,085
9 1.5, 0.75, 2 11,123,013 68.1 15,607,341 0 236,678 4.0 328,252 15.3 143,042

10 2, 0.25, 2 4,185,653 70.0 6,789,939 ≤ 0.01 71,200 2.0 1,835,970 16.4 637,795
11 2, 0.75, 2 13,594,989 68.7 18,230,991 0.02 156,213 2.2 327,148 9.4 74,142

12 2.5, 0.25, 2 4,660,549 69.1 7,418,060 0 89,448 1.1 1,733,964 12.3 568,131
13 2.5, 0.75, 2 15,440,792 67.5 20,163,128 ≤ 0.01 138,322 1.1 255,162 8.9 49,716

14 2, 0.5, 1.5 9,856,410 65.1 12,883,967 ≤ 0.01 228,283 4.8 1,547,928 10.6 353,773
15 2, 0.5, 3 10,106,673 77.3 14,251,949 ≤ 0.01 147,803 0.5 654,061 12.5 228,943

segment. For example, the market share in the ”Business - Low Fare” column corresponds to the

percentage of business passengers who purchase Low Fare tickets of the host airline.

In our first set of experiments (rows 2 to 7), we vary K1 while holding K2 and K3 fixed at 0.5

and 2 respectively. These experiments test the effects of an airline changing its pricing strategy

by increasing the differential between the fares offered in different fare classes. Results suggest

that, initially, an increase in K1 value (i.e., stronger price differentiation) enables profit increases.

However, beyond K1 = 2, further increase in K1 seems to decrease profits indicating that K1 = 2

is a ”sweet spot” in terms of profit maximization. Compared to charging a single fare value to all

passengers (i.e., K1 = 0), offering two different fares (K1 6= 0) may allow for considerable increases in

total profit with a maximum profit increase (among the tested values) of over 80%. The incremental

revenue clearly comes from the business passengers purchasing higher fare tickets.

In the second set of experiments (rows 8 and 9), we vary K2 from 0.25 to 0.75 (as compared to

0.5 in row 5), with K1 = 1.5 and K3 = 2. This assesses the effect of changes in the mix of business

versus leisure passengers on the optimal timetabling and fleet assignment solutions. Note that the

market share for each category does not fluctuate much as the value of K2 changes (between rows

5, 8 and 9), but the operating profit increases significantly as K2 increases. This is expected, as

higher values of K2 induce a higher proportion of business passengers. We obtain similar insights

in rows 10 and 11 (as compared to row 6) and in rows 12 and 13 (as compared to row 7) for K1 = 2

and K1 = 2.5, respectively. Next (in rows 14 and 15), we vary K3 from 1.5 to 3 (as compared to 2 in

row 6), with K1 = 2 and K2 = 0.5. We find that the operating profit increases with increasing value

of K3. This is because a major driver of operating profits is the ”Business - High Fare” revenue,

and larger values of K3 induce a lower price-sensitivity of business passengers (hence increasing

the airline’s ability to extract more revenue on that segment).
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We caution the reader not to interpret the absolute numerical values of results presented in

Table 6 and in this subsection too literally, because they are based on the aforementioned highly

approximate input parameter assumptions. Accurate values of these inputs are available to an air-

line interested in using these models and algorithms as decision support. But, more importantly,

the relative values provide valuable insights. Consistent with the revenue management literature,

they underscore the impact of market segmentation and differential pricing on airline operating

profitability, even when integrated with timetable development and fleet assignment. Moreover, we

find that integrating downstream revenue management dynamics, even in an approximate man-

ner, can improve the flight timetabling and fleet assignment solutions. The model and solution

approaches developed in this paper are endowed with this capability.

6.2. Integration with Frequency Planning Decisions

In general, when an airline decides to serve a nonstop segment, frequency plans are established first,

usually a year or more before actual departure time. The next step, timetables of departure times

and aircraft rotations are established up to 2-6 months before actual departure time (Barnhart and

Vaze 2015). Joint optimization of flight frequency, timetabling and fleet assignment decisions, given

their obviously interdependent nature, can potentially yield much larger profit increases than only

optimizing the timetabling and fleet assignment decisions. However, flight frequency decisions also

depend on a variety of strategic and operational considerations such as, airline business strategy,

aircraft orders, airport presence considerations, airport gate and slot availability, etc., which are

beyond the scope of this paper. It would be naive to assume that airlines can easily make significant

changes to their flight frequencies even if these changes indicate a potential for additional profit. In

view of these factors, we analyze the impact of some incremental frequency planning flexibility by

allowing the daily frequency to fluctuate within ±1 and ±2 from the existing frequency value on

each segment. This is formulated by replacing Constraint (20) by Constraint (30) with ∆ = 1 and

∆ = 2, respectively. Specifically, note that we retain the aircraft count and flow balance constraints

to ensure that the schedule remains feasible.

Freqs−∆≤
∑
t∈T

∑
f∈F

xs,f,t ≤ Freqs + ∆, ∀s∈ S, (30)

Table 7 compares the optimal solutions of our integrated approach when frequency is held con-

stant on all segments, when frequency is allowed to fluctuate by at most ±1, and when frequency

is allowed to fluctuate by at most ±2. For each case, we report several summary statistics to

characterize the airline’s revenue, operating cost and profit, as well as the number of passengers

carried across all Hub-to-Hub (”HH”), Hub-to-Spoke and Spoke-to-Hub (”HS”), and Spoke-to-

Spoke (”SS”) segments. Here, Seattle (SEA), Anchorage (ANC) and Portland (PDX) are labeled
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Table 7 Effect of integration with frequency planning

Profit ($)
Revenue Operating Flights Number of Passengers

Total ($) Nonstop ($) One-stop ($) Cost # Total # HH # HS # SS Nonstop One-stop

±0
4,757,042 9,931,526 6,990,814 2,940,712 5,175,311 395 30 329 36 31,622 11,042

(0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%)

±1
5,576,506 12,127,852 7,905,909 4,221,942 6,551,824 468 28 398 42 35,865 15,350

(+17.23%) (+22.80%) (+13.66%) (+44.58%) (+31.69%) (+18.48%) (-6.67%) (+20.97%) (+16.67%) (+14.14%) (+39.90%)

±2
5,869,752 13,029,865 8,384,640 4,645,224 7,160,609 516 28 440 48 38,056 17,383

(+23.39%) (+31.94%) (+20.54%) (+59.08%) (+43.93%) (+30.63%) (-6.67%) (+33.74%) (+33.33%) (+21.11%) (+58.43%)

as hub airports and all others are labeled as spoke airports. For each metric, the table reports the

relative change from the baseline case where frequency is held constant.

Table 7 shows that, from ±0 to ±1 margin, total operating profit increases considerably (by

17.23%), while from ±1 to ±2 margin, there is a smaller additional increase (from 17.23% to

23.39%). Analogously, the increase in the total number of flights from ±0 to ±1 margin is larger

(73) than that from ±1 to ±2 margin (48). Nonstop revenue increases from $6.99 million to $7.91

million to $8.38 million as we go from ±0 to ±1 to ±2 margin while the one-stop revenue increases

from $2.94 million to $4.22 million to $4.65 million. The large percentage increase in one-stop

revenue could be explained by the fact that most of the increase in the number of flights is on

the Hub-to-Spoke and Spoke-to-Hub segments. These additional flights contribute moderately to

increased nonstop revenue, but very significantly toward a large percentage increase in one-stop

revenue by providing better connecting service to many of the low-demand markets that cannot

support nonstop flights. This is also reflected in the large percentage increase in the number of one-

stop passengers (39.90% and 58.43% increases corresponding to the ±1 and ±2 cases, respectively).

As mentioned earlier, frequency planning is a highly complex step in an airline’s schedule plan-

ning process and it requires paying attention to a variety of strategic and operational consider-

ations. We only consider marginal deviations from existing flight frequency values as a way to

demonstrate the ability of our overall modeling and computational approach to provide decision

support for the joint optimization problem of frequency planning, timetable development and fleet

assignment, by potentially incorporating these strategic and operational considerations. The actual

implementation and evaluation of a comprehensive frequency planning optimization problem using

our modeling and computational framework is an interesting direction for future research.

6.3. Impact of an Airline Merger

On December 6th, 2016, the United States Department of Justice approved Alaska Airlines’ merger

with Virgin America, allowing them to form the fifth largest airline in the United States. Before

this merger, Alaska Airlines had its main hubs at Seattle (SEA), Portland (PDX) and Anchorage

(ANC) while Virgin America had its main hubs at San Francisco (SFO) and Los Angeles (LAX). In

addition, Alaska’s original fleet consisted exclusively of the Boeing 737 fleet family, while Virgin’s
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consisted exclusively of the Airbus 320 fleet family. The merger created interesting opportunities

to assess the effectiveness of the combined airline in serving the joint network and leveraging the

newly heterogeneous fleet to generate new connecting itineraries.

We apply our modeling and computational framework to evaluate and optimize the timetable

of the combined airline. The results are presented in Table 8. Columns 2 and 3 correspond to the

optimal solution obtained using our modeling and computational framework separately for each of

the two airlines. Column 4 reports the total values corresponding to Columns 2 and 3, which serves

as the benchmark for comparing the post-merger optimal solutions for the joint airline. After the

merger, we evaluate scenarios considering various degrees of integration between the two airlines

(Columns 5, 6, 7 and 8). At one end, Column 5 reports a case where the airlines continue to operate

the same timetables as before the merger. Any improvement in this case comes from the additional

passenger connection opportunities arising from joining of the two networks. Solutions in Columns

4 and 5 correspond to the same flight timetables fleet assignmentd, leading to the same total

operating cost value, but have different passenger flows and hence different revenue values. Column

6 reports the benefits of re-optimizing the timetabling as well as the fleet assignment decisions

jointly for the combined airline. Additionally, past literature has stated the possibility of unit

operating cost reductions achievable due to a merger, resulting from a better reallocation of capital

and labor resources leading to more efficient utilization of staff, fuel and maintenance services

(Mudde and Sopariwala 2014). Columns 7 and 8 account for this possibility by re-optimizing the

timetables and the fleet assignment decisions of the joint airline while assuming a network-wide unit

operating cost reduction by 1% and 5%, respectively. All percentage changes reported in Columns

5 through 8 are calculated based on the corresponding numbers in Column 4 used as the baseline.

As expected, compared to Column 4, the one-stop revenue increases significantly (by almost

20%) in Column 5, due to the additional passenger connection opportunities. At the same time,

this gets partly offset by lower nonstop revenue because of the displacement of some of the nonstop

passengers by the one-stop passengers in this process. This leads to a small increase in the operating

profit (< 1%). From Column 5 to Column 6, we observe a significant (7.34%) additional increase in

operating profit. This is due to a considerable increase in nonstop as well as one-stop revenue which

more than compensates for some of the corresponding increase in operating cost. In this case, the

new fleet assignment solution allows carrying more passengers in profitable markets to increase

total revenue. In other words, the merger alone (i.e., the new passenger connection opportunities)

results in very small benefits, but the combination of the merger and the re-optimization of flight

timetables and fleet assignment solutions results in significant profit improvement.

Under the last two scenarios (i.e., Columns 7 and 8), reductions in unit operating costs result in

further improvements in operating profits, as expected. Note, however, that the nonstop revenue
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Table 8 Assessment of the impact of a merger on the optimal timetabling and fleet assignment decisions

Pre-Merger Post-Merger
Alaska Airlines Virgin America Total Fixed TT Opt TT Opt TT Opt TT

No CR No CR 1% CR 5% CR

# of daily flights 395 142 537 537
# of unique destinations 59 21 61 61
# of aircraft 133 54 187 187

Total passengers
48,691 20,023 68,714 66,901 68,000 67,879 67,570

(0%) (-2.64%) (-1.04%) (-1.22%) (-1.66%)

Total profit ($)
4,885,476 3,365,813 8,251,289 8,318,420 8,929,319 8,985,121 9,206,315

(0%) (+0.81%) (+8.22%) (+8.89%) (+11.57%)

Nonstop revenue ($)
7,651,437 4,812,711 12,464,148 11,962,136 12,242,570 12,144,660 12,079,316

(0%) (-4.03%) (-1.78%) (-2.56%) (-3.09%)

One-stop revenue ($)
2,438,974 525,247 2,964,221 3,533,683 3,958,583 4,059,515 4,056,083

(0%) (+19.21%) (+33.55%) (+36.95%) (+36.83%)

Operating cost ($)
5,204,934 1,972,465 7,177,399 7,177,399 7,272,717 7,219,288 6,929,173

(0%) (0%) (+1.33%) (+0.58%) (-3.46%)

*Fixed TT No CR: Fixed timetable and no operating cost reduction.
*Opt TT No CR: Optimized timetable and no operating cost reduction.
*Opt TT 1% CR: Optimized timetable and 1% operating cost reduction.
*Opt TT 5% CR: Optimized timetable and 5% operating cost reduction.

decreases while the one-stop revenue increases, compared with Column 6, and that these two

effects balance each other out resulting in negligible change in total revenue. Hence the profit

enhancements almost exactly reflect the effects of cost reductions. As a result, the profit increase

in the 5% cost reduction scenario in Column 8 when compared to that without any cost reduction

in Column 6, is approximately five times the profit increase in the 1% cost reduction scenario when

compared to that without any cost reduction in Column 6. Interestingly, in each of the post-merger

scenarios (i.e., Columns 5 through 8), the total number of passengers stays below the pre-merger

value (i.e., Column 4), and yet they all have higher profits than that in the pre-merger scenario.

This underscores the fact that more passengers need not lead to higher profits. Columns 5 and

6, in particular, highlight the benefits of being able to solve a larger optimization problem thus

enabling the capture of more lucrative passengers, which in turn increases the revenue and profit.

Figure 3 presents more in-depth analysis of the changes in total revenue corresponding to

Columns 4 and 6 of Table 8. It displays, on the x-axis, the top seven airports of the joint Alaska-

Virgin network, in decreasing order of the estimated number of departing passengers in the opti-

mized solution. Additionally, it also shows the combined data for the three airports in the New

York City area (EWR, LGA and JFK, referred to as “NYC”). Interestingly, we observe a post-

merger revenue decrease only at the three hubs of the original Alaska Airlines network (namely,

SEA, PDX, and ANC). Each of the other airports (including “NYC”) shows a post-merger revenue

increase between 6% and 44%. In particular, the two hubs of Virgin America (SFO and LAX) as

well as San Diego (SAN) and Las Vegas (LAS) show considerable increase in total passenger rev-

enue, which appears to further strengthen the joint airline’s position in the West Coast markets. In

other words, our integrated flight timetabling and fleet assignment approach enables re-allocation



Wei, Vaze, and Jacquillat: Airline Timetable Development and Fleet Assignment
38

Figure 3 In-depth analysis of the estimated fare revenue by airport
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of aircraft resources to flight segments that leverage the combined network of the two airlines and

resulting passenger connection opportunities, in turn leading to increased operating profitability.

7. Conclusion

We develop an original modeling and computational framework to comprehensive timetable devel-

opment and fleet assignment under endogenous passenger choice. Given the flight frequency on

each nonstop segment, unconstrained passenger demand in each market and the airline’s fleet

availability, the approach produces flight timetables and fleet assignment solutions that maximize

the airline’s profit. Our mathematical model leverages a sales-based linear programming approach

that explicitly incorporates the attractiveness of each itinerary and the resulting passenger booking

decisions within a large-scale mixed-integer optimization model of airline scheduling. This problem

is extremely difficult to solve using off-the-shelf optimization solvers. Therefore, we design a multi-

phase solution framework and several additional heuristics to enable practical implementation of

the model in reasonable computational times that are consistent with the practical requirements

for solving such problems of strategic nature.

In a case study setting leveraging data from a major hub-and-spoke airline carrier in the United

States, computational results demonstrate that our algorithm consistently and substantially outper-

forms a direct implementation of the model using a commercial mixed-integer optimization solver.

Most importantly, comparisons with baselines that replicate the various incremental scheduling

approaches found in the literature and/or in practice suggest that the real power of the approach

developed in this paper lies in the combination of our original modeling framework and our original

solution approaches, which can result in significant profit improvements (ranging between 15% and
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40%). We also presented a series of additional extensions to integrate frequency planning decisions,

to capture the effects of market segmentation and revenue management practices, and to study the

impacts of an airline merger on the optimal timetabling and fleet assignment solutions at various

degrees of post-merger integration. These experiments and results demonstrate the versatility and

usability of our approach for a variety of strategic planning decisions made by major airlines.

In future research, our framework can be extended to integrate other airline planning consider-

ations such as route development, aircraft maintenance routing, and crew scheduling. In addition,

even though our accelerated heuristic strategies considerably improve the computational perfor-

mance, an optimality gap may still exist, and very large airline networks (such as those of the

mega-carriers created by the mergers of the major U.S. carriers in the last decade) may still be

impossible to solve within acceptable computational times. This motivates further research into

even faster heuristics or exact methods to handle these extremely large problem instances.
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