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Abstract

This paper presents an optimization model for the runway scheduling problem under consideration of winter

operations. During periods of snowfall, runways have to be intermittently closed in order to clear them from

snow, ice, and slush. To support human planners with the resulting complex scheduling tasks, we propose

an integrated optimization model to simultaneously plan snow removal for multiple runways and to assign

runways as well as take-off and landing times to aircraft. We formulate the model as a mixed-integer linear

problem. To improve the computational tractability of our exact approach, we develop pruning rules and

valid inequalities. Additionally, we derive initial start solutions heuristically. We validate and benchmark the

model with real-world data from a large international airport and compare the results to a practice-oriented

heuristic approach. A computational study shows that our solution approach significantly reduces weighted

aircraft delay and computes high quality runway schedules within a few seconds. Furthermore, we present

managerial insights based on the results of our work.
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1. Introduction

Runway availability is a scarce resource at many major international airports. During snowfall, this

availability is further limited as runways have to be intermittently closed in order to clear them from snow,

ice, and slush. The planning and construction of additional runways is expensive and usually a long-term

project. Additionally, for airports with limited site space, e.g., city airports, an extension of the runway

system is often not feasible. Hence, airport operators and air traffic control have to utilize the existing

runway system in the best possible way.
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In this paper, we solve the problem of assigning runways as well as take-off and landing times to aircraft

during winter operations while simultaneously planning snow removal activities on runways considering the

scarcity of snow removal equipment. This is a complex decision problem since a human planner, i.e., the

responsible air traffic controller or runway manager, has to make fast decisions taking into account frequently

changing conditions:

• The set of aircraft to be considered often changes since aircraft are constantly taking-off or landing and

new aircraft are entering the near-terminal airspace.

• Attributes of aircraft such as the target take-off or landing time and the cost factor for delay are aircraft

specific and can change over time.

• The planning of snow removal activities is highly dependent on the current weather and its forecast as

well as on the availability of snow removal equipment.

To account for changing and evolving decision variables and parameters, especially modifications in the set of

considered aircraft, a recalculation of the optimal solution every minute is necessary. Due to the large number

of considered aircraft, runways, and snow removal groups as well as the incorporation of the time dimension,

the possible solution space is extremely large, which further complicates the planning task. Additionally, the

multitude of involved stakeholders, such as passengers, airlines, air traffic control, and the airport operator,

require a fair, transparent, and traceable decision. In practice, air traffic controllers and runway managers

conduct the runway scheduling process manually based on a First-Come-First-Served (FCFS) principle. The

decision when and in which order runways are closed for snow removal is based on human experience and

intuition instead of data-driven mathematical optimization. To facilitate this planning activity, we propose

an optimization based solution methodology for this scheduling task.

This paper comprises a methodological and a managerial contribution: We present and investigate the

first integrated model which simultaneously schedules departing and arriving aircraft and snow removals

on runways. So far, this runway scheduling problem during winter operations has not been studied in the

literature. We model the problem as a mixed-integer linear problem. Additionally, we derive pruning rules

to presolve and fix binary variables and we proof problem specific valid inequalities which exploit compulsory

precedence relations between aircraft and snow removals. Our proposed methodology enables planners to solve

real-world instances of realistic size to optimality. Finally, we show that our optimal approach significantly

outperforms a practice-oriented heuristic in terms of overall delay cost. Furthermore, we derive managerial

insights assessing the performance of practice-oriented heuristics and highlighting the benefits of an integrated

optimization approach.
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The investigated problem is equivalent to a parallel machine scheduling problem with sequence-dependent

setup times and preventive maintenance activities with flexible starting times, which has not been studied

in the literature so far. Thus, our model formulation and the presented pruning rules, valid inequalities, and

start solution heuristic can also be applied to related problems in the field of machine scheduling.

The structure of this paper is as follows. In Section 2, we detail the runway scheduling problem during

winter operations. Section 3 discusses previous work and related research articles and positions our work

within the existing literature. In Section 4, we present a solution methodology for the considered scheduling

problem, including a mathematical mixed-integer linear model formulation, pruning rules, valid inequalities,

and a heuristic to derive initial start solutions. In Section 5, we apply our model to real-world instances of

a large international airport. We compare the results to a practice-oriented heuristic mimicking the manual

process performed by runway managers and air traffic controllers and provide four managerial key insights.

Finally, we summarize and conclude our work in Section 6.

2. Problem Description

On an operational level, air traffic controllers assign runways and take-off and landing times to departing

and arriving aircraft. This classical aircraft scheduling problem usually covers a planning horizon of up to one

hour (15 to 75 minutes before take-off or landing). In the last phase, approximately 15 minutes before take-off

or landing, the aircraft sequence is fixed due to operational limitations, and cannot be changed anymore.

For departing aircraft, a reliable take-off target time can usually be predicted one to two hours in advance

once the aircraft arrived at the departure gate. For an arriving aircraft, a reliable target landing time can be

predicted once the aircraft is airborne. In both cases, we consider a deviation from the target time as delay,

which induces aircraft specific cost. Each aircraft take-off and landing has to be scheduled within a certain

time window. In general, an arriving aircraft can land within a time window where the target landing time

of the aircraft defines the earliest possible landing time and available fuel limits the latest possible landing

time. Similar principles apply for departing aircraft for which the earliest possible completion time of ground

operations defines the push-back target time and earliest departure time. The latest possible departure time

is theoretically unrestricted with later departure times causing ever increasing delay cost.

Aircraft scheduled on the same runway have to follow certain separation requirements to comply with

safety regulations imposed by aviation authorities, such as the Federal Aviation Administration (FAA) or the

International Civil Aviation Organization (ICAO). Required separation times mainly depend on the wake

vortices caused by the leading aircraft and their impact on following trailing aircraft. We consider separation

requirements not only for aircraft which directly follow each other, but for all pairs of aircraft on the same

runway, which Beasley et al. (2000) defined as complete separation. Influence factors for these separation

3



Table 1: Separation requirements (see Balakrishnan & Chandran 2010; FAA 2017)

Trailing

Landing Take-off

Leading Large Boeing 757 Heavy Super Large Boeing 757 Heavy Super

Landing

Large 69 69 60 60 75 75 75 75

Boeing 757 157 157 96 96 75 75 75 75

Heavy 157 157 96 96 75 75 75 75

Super 180 180 120 120 180 180 120 120

Take-off

Large 60 60 60 60 60 60 60 60

Boeing 757 60 60 60 60 120 120 90 90

Heavy 60 60 60 60 120 120 90 90

Super 180 180 120 120 180 180 120 120

requirements are

• the operation modes of aircraft (take-off or landing),

• their weight class (e.g., small, large, Boeing 7571, heavy, super), and

• their relative positioning (leading or trailing).

Table 1 shows separation requirements for all combinations of aircraft classes usually operated at large

international airports.

Models assigning runways and take-off or landing times to aircraft under these requirements in order to

minimize delay have been developed and described in the academic literature (see Section 3). All of these

models implicitly assume that runways are constantly available during the planning horizon or that periods of

runway (un-)availability are known as an input parameter to the model in advance, e.g., if changing runway

configurations are incorporated in the model (cf. Bertsimas & Frankovich, 2015).

These assumptions do not hold in winter when runways have to be intermittently closed for snow removal

or runway de-icing. In winter operations, snow removal on runways allows for certain flexibility regarding

the precise timing. Hence, the start times of snow removals for different runways are subject to planning

and scheduling itself. If snow starts piling up on a runway, flight operations continue as long as safe flight

operations can be ensured. The conditions of the runway, such as the friction value of the aircraft tires on the

runway, are closely monitored by the runway manager. As soon as safe flight operations cannot be ensured

1Aircraft of the Boeing 757 series do not fall within the characteristics of large or heavy aircraft and, thus, build an own class
with regard to separation requirements and the runway scheduling problem (FAA, 2017)
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anymore, the runway has to be temporarily closed and can only be reopened after the completion of snow

removal, when flight operations are safe again. We assume that the information on the exact time when

flight operations on a runway become unsafe, is available for each runway at the beginning of the operational

planning horizon (up to 75 minutes in advance). This assumption is valid due to advanced weather forecasts

which allow an accurate forecast for up to several hours. Given the operational planning horizon of 15 to 75

minutes before take-off or landing, we assume that each runway has to be cleared not more than once within

the planning horizon.

For snow removal and runway de-icing, multiple snow removal trucks and de-icing trucks serve as one

snow removal group. Such a snow removal group collaboratively clears a runway from snow, ice, and slush.

Snow removal takes a certain time per runway (e.g., 25 minutes per runway at Munich International Airport).

When it starts snowing, flight operations become unsafe at all runways of an airport at approximately the

same time. Under continuous winter operations, i.e., if it is snowing for a longer period of several hours, the

time at which flight operations on a runway become unsafe depends not only on the current snowfall, but

also on the time of the last snow removal on that runway.

Snow removal equipment and their operators are often a scarce resource at airports and, therefore, the

number of snow removal groups is often smaller than the number of runways. At Munich International

Airport, for example, only one snow removal group serves the two existing runways. This means that not

all runways can be cleared at the same time and a sequence of snow removals on different runways has to

be planned. Snow removal groups need a certain amount of time between snow removals to drive from one

runway to the next runway, which has to be reflected in the planning. This required transfer time depends on

the physical layout of the airport (e.g., between 15 and 30 minutes at Munich International Airport depending

on which of the two runways is cleared first). The time required to refill the trucks with fuel or de-icing liquid

can also be incorporated in these transit times.

When a runway is closed for snow removal or because safe operations cannot be guaranteed any more,

aircraft have to be delayed or reassigned to another runway.

3. Related Literature

In this section, we briefly review related literature and research articles. First, we present general papers

and model formulations for the runway scheduling problem (RSP). Then, we focus on exact and heuristic

solution approaches for the RSP. We briefly discuss related problems in the field of machine scheduling

and review papers that focus on winter operations at airports. Finally, we give an overview of established

pruning rules and valid inequalities for the RSP. For an extensive overview of related literature, we refer to

Bennell et al. (2011) and Lieder & Stolletz (2016). Bennell et al. (2011) presented a holistic literature review
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on optimizing runway schedules considering articles published until 2009. A concise and comprehensive

overview of recent articles until 2015 can be found in Lieder & Stolletz (2016).

General papers and model formulations for the RSP. The RSP and aircraft scheduling problem (ASP) or

aircraft landing problem (ALP) have widely been studied. First models for the single runway case were

proposed by Dear (1976) and Psaraftis (1980). From there on, different model formulations and solution

methodologies were developed ranging from very general frameworks (cf. Bertsimas & Frankovich, 2015)

to specific applications (cf. Balakrishnan & Chandran, 2010; Samà et al., 2014). The model by Beasley

et al. (2000) is one of the most cited and the basis for many subsequent problem formulations. The authors

presented a mixed-integer model and a branch-and-bound solution approach for the single and multiple

runway problem. Herein, they minimize the sum of weighted earliness and delay, considering the possibility

to schedule aircraft before their target time and assuming complete separation. For a stochastic version of

the RSP, Solak et al. (2018) proposed two different model formulations and a solution methodology based on

sample average approximation and Lagrangian-based scenario decomposition.

Exact approaches for the RSP. To solve the RSP to optimality, various exact solution methods have been

explored. Ernst et al. (1999) proposed a branch-and-bound algorithm with a specialized simplex method.

Ghoniem et al. (2014) presented advanced model formulations, e.g., an asymmetric traveling salesman pro-

blem (TSP) with time windows, as well as efficient preprocessing procedures. Avella et al. (2017), Faye

(2015) and Heidt et al. (2014) presented time-indexed formulations. Ghoniem et al. (2015) suggested a

branch-and-price algorithm for the multiple runway problem. Dynamic programming approaches have been

developed by Bennell et al. (2017) for the single runway problem and by Lieder & Stolletz (2016) for multiple

interdependent and heterogeneous runways.

Heuristic approaches for the RSP. Bianco et al. (1999) showed that the general case of the RSP is NP-hard.

Hence, many (meta-)heuristics have been developed to solve the RSP and related problems. These include

local search algorithms (cf. Bianco et al., 2006; Sabar & Kendall, 2015), variable neighborhood and adaptive

large neighborhood search methods (cf. Salehipour et al., 2009; Vadlamani & Hosseini, 2014), simulated

annealing (cf. Salehipour et al., 2013; Bennell et al., 2017), ant colony optimization (cf. Bencheikh et al.,

2011), and population based heuristics (cf. Hansen, 2004; Liu, 2010; Pinol & Beasley, 2006). Scheduling rules

and various greedy heuristics have been presented by D’Ariano et al. (2015).

Related machine scheduling problems. The RSP can be seen as a machine scheduling problem with sequence-

dependent processing or setup times where runways correspond to machines, aircraft correspond to jobs, and

separation requirements correspond to sequence-dependent setup times. From a machine scheduling point of
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view, snow removal has structural similarities to preventive maintenance, e.g., when maintenance crews have

to maintain machines within a given time window and when there are travel times between machines for

these crews moving from one machine to the next machine. While such a variant has not been investigated

yet, Gao et al. (2006) studied the flexible job shop scheduling problem considering maintenance activities

with flexible starting times and proposed a hybrid genetic algorithm to solve it. For a similar problem with

scarce maintenance resources where only one machine can be maintained at any given time, Wang & Yu

(2010) proposed a heuristic algorithm based on a filtered beam search.

Winter operations at airports. Regarding winter operations at airports, only a few publications exist. Janic

(2009) explicitly investigated the impact of heavy snowfall on airport operations using two deterministic

queuing models. The first queuing model represents the accumulation of snow and ice on the airport surface

and its impact on the airport’s capacity while the second queuing model represents the handling of flights

under such decreased airport capacity. Kotas & Bracken (2018) presented a mixed-integer linear program to

reschedule an airline’s flight plan for a given day when the de-icing of aircraft causes delays and potential

cancellations.

Pruning rules and valid inequalities for the RSP. Maere et al. (2017) gave a comprehensive overview of

the application of pruning rules for the RSP. The authors presented various generic pruning principles and

embedded these pruning rules into a dynamic programming approach for the RSP. Valid inequalities for the

RSP have been used by different authors to strengthen the linear relaxations of the model formulations.

Beasley et al. (2000) presented a basic set of valid inequalities for the single and multiple runway scenario.

Ghoniem et al. (2014) derived valid inequalities to tighten their problem formulation, which models the single

runway case as an asymmetric traveling salesman problem with time windows.

In summary, existing literature focuses on a wide range of aspects of runway scheduling. However, the

RSP during winter operations has not been investigated so far. In the following, we present an efficient

solution methodology for this problem using an exact optimization approach and applying pruning rules

during preprocessing, valid inequalities for tightening the LP relaxation and a heuristic to obtain an initial

start solution.

4. Solution Methodology

In this section, we detail and explain our solution methodology. In Section 4.1, we introduce a mixed-

integer linear problem formulation for the RSP considering multiple heterogeneous runways and multiple snow

removal groups. The model builds upon and extends the model of Beasley et al. (2000). In Section 4.2, we

derive pruning rules, which can be applied during preprocessing, to improve the performance and tractability
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of our approach. To derive better LP bounds, we present valid inequalities in Section 4.3. Additionally, in

Section 4.4, we develop a start heuristic which often yields a good feasible start solution for the MIP solver

and decreases the computational time. These pruning rules, valid inequalities, and start solutions enable us

to solve real-world instances of realistic size to optimality.

4.1. Mathematical Model Formulation

Our model reflects the problem setting described in Section 2. In particular, it assigns

• runways and take-off or landing times to departing and arriving aircraft and

• snow removal groups and snow removal times to runways.

We consider time windows for aircraft, i.e., earliest and latest possible take-off or landing times, as well as

separation requirements between pairs of aircraft and between aircraft and snow removal activities. Additio-

nally, we consider runway closings in case too much snow, ice, or slush has piled up on the runways and safe

operations cannot be guaranteed any more. Once a runway has become unsafe, it must be cleared before it

can be reopened. We assume that each runway is cleared exactly once. Note that this assumption does not

enforce unnecessary snow removals, as it is possible to add a dummy snow removal at the end of the planning

horizon if a runway does not become unsafe. For snow removal groups, we consider non-symmetric transfer

times between runways. The model minimizes the total weighted aircraft delay.
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Using the notation introduced in Table 2, our MIP formulation is as follows:

minimize
∑
a

Ca(xa − Ta) (1)

subject to

Ta ≤ xa ≤ La ∀ a ∈ A (2)

δij + δji = 1 ∀ i, j ∈ A ∪R : i 6= j (3)∑
r

yar = 1 ∀ a ∈ A (4)

zab ≥ yar + ybr − 1 ∀ a, b ∈ A : a 6= b; r ∈ R (5)

xb ≥ xa + Sabzab −Mδba ∀ a, b ∈ A : a 6= b (6)∑
g

ρrg = 1 ∀ r ∈ R (7)

φrs ≥ ρrg + ρsg − 1 ∀ r, s ∈ R : r 6= s; g ∈ G (8)

vs ≥ vr +Qrsφrs −Mδsr ∀ r, s ∈ R : r 6= s (9)

vr ≥ xa +Oayar −Mδra ∀ r ∈ R; a ∈ A (10)

xa ≥ vr + Pryar −Mδar ∀ r ∈ R; a ∈ A (11)

xa ≤ Ur +M(1− yar) +Mδra ∀ r ∈ R; a ∈ A (12)

The Objective function (1) minimizes the sum over all aircraft’s weighted delay. Constraints (2) secure

that all flights are scheduled within their allowed time windows defined by their target take-off or landing time

and their latest possible take-off or landing time. Constraints (3) sequence all activities by deciding for each

pair of activities i and j if i precedes j or vice versa. Activities in this sense can either be (starting or landing)

aircraft or snow removals on runways. Constraints (4) secure that each aircraft is scheduled on exactly one

runway. Constraints (5) determine whether two aircraft are scheduled on the same runway. Constraints (6)

guarantee that all separation requirements between aircraft on the same runway are met, imposing complete

separation. Constraints (7) assign exactly one snow removal group to each runway and, thus, to each snow

removal activity. Constraints (8) determine whether two runways are cleared by the same snow removal

group. Constraints (9) secure sufficient setup time between two consecutive snow removals conducted by

the same group. This setup time includes the time for clearing the first runway and the transfer time to

the next runway. Time for refilling trucks with fuel or de-icing liquid can be incorporated in the sequence-

dependent setup time Qrs as well. Constraints (10) secure sufficient separation time between an aircraft and

a following snow removal on the same runway. This time is mainly defined by the duration of the take-off or
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Table 2: Sets, parameters and decision variables

Sets and related parameters

Notation Definition

a ∈ A Set of aircraft

Ta Target take-off or landing time of aircraft a

La Latest possible take-off or landing time of aircraft a

Ca Cost coefficient per time unit for scheduling aircraft a after Ta

Sab Sequence-dependent separation time between aircraft a and b if a is scheduled before b on the
same runway

Oa Required separation time between aircraft a and a subsequent snow removal on the same
runway

g ∈ G Set of snow removal groups

r ∈ R Set of runways

Ur Time at which flight operations on runway r become unsafe

Pr Required time to clear runway r

Qrs Sequence-dependent setup time between starts of snow removals on runways r and s
conducted by the same snow removal group (including snow removal time Pr and required
transfer time from runway r to runway s)

Decision variables

Notation Definition

xa ≥ 0 Take-off or landing time of aircraft a

vr ≥ 0 Start time of snow removal on runway r

δij =

1
if activity i starts before activity j with activities being scheduled aircraft or snow
removals on runways (i, j ∈ A ∪R; i 6= j)

0 otherwise

yar =

1 if aircraft a is scheduled on runway r

0 otherwise

zab =

1 if aircraft a and b are scheduled on the same runway

0 otherwise

ρrg =

1 if snow removal on runway r is conducted by snow removal group g

0 otherwise

φrs =

1 if snow removals on runways r and s are conducted by the same snow removal group

0 otherwise
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landing procedure. Similarly, Constraints (11) secure sufficient separation time between a snow removal and

a following aircraft on the same runway. This time is defined by the duration of a snow removal procedure

on a specific runway. Finally, Constraints (12) make sure that an aircraft is only scheduled on a runway as

long as flight operations are safe, i.e., before a runway becomes unsafe due to snow or after snow removal on

that runway has been completed. All big-M coefficients are sufficiently large if M = maxa∈A{La} holds.

Note that runways can be heterogeneous in the sense that specific combinations of aircraft operations

and runways can be prohibited. This allows to model cases in which specific runways are too short for

aircraft of class “heavy” or “super” or situations in which only take-offs or landings are permitted on certain

runways. Fixing variables yar prohibits or enforces such assignments of aircraft to runways and decreases the

complexity of the model since it prunes the branch-and-bound search tree. We assume that snow removal

groups are identical in terms of driving speed and snow removal speed. Nevertheless, it is possible to prohibit

or enforce the assignments of snow removal groups to runways by fixing variables ρrg accordingly.

4.2. Problem Specific Pruning Rules

We apply pruning rules during preprocessing. We precalculate and fix binary variables to 0 or 1 in order

to decrease the solution space and to accelerate the branch-and-bound process. Maere et al. (2017) give a

comprehensive overview of various pruning rules for the runway scheduling problem. Most of these pruning

rules are suitable for dynamic programming approaches, while only a few are also applicable for mixed-integer

programs.

In the following, we discuss three types of pruning rules. Pruning rules of type I order aircraft according

to their non-overlapping time windows and were presented by Beasley et al. (2000). Pruning rules of type

II order aircraft with overlapping time windows of the same aircraft class according to their target time and

are an extension of the pruning rule developed by Briskorn & Stolletz (2014). Pruning rules of type III

precalculate a dominant, i.e., optimal, snow removal pattern independently from actual aircraft traffic for

many instances with homogeneous runways and have not been discussed in literature so far.

Pruning Rules of Type I: Strict Orders of Aircraft Based on Time Windows

For some pair of aircraft a and b, an optimal order can be determined based on their time windows (cf.

Beasley et al., 2000).

Theorem 1. If the time window [Ta, La] of aircraft a and the time window [Tb, Lb] of aircraft b do not

overlap with La < Tb, then aircraft a must be scheduled before aircraft b:

δab = 1 ∀ a, b ∈ A : La < Tb (13)
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Proof. La denotes the latest possible take-off or landing time of aircraft a and Tb denotes the earliest possible

take-off or landing time of aircraft b. From La < Tb follows directly that aircraft a must be scheduled before

aircraft b.

Pruning Rules of Type II: Strict Orders within Aircraft Classes of Separation Identical Aircraft

Pruning rules of type II are based on the notion of aircraft classes.

Definition 1. Aircraft classes of separation identical aircraft. Aircraft a and a′ ∈ A are separation identical

if they have the same pairwise separation requirements in relation to all other aircraft b ∈ A \ {a, a′}:

Sab = Sa′b ∧ Sba = Sba′ ∀ b ∈ A \ {a, a′}. All separation identical aircraft constitute an aircraft class.

For the objective of minimizing makespan and weighted delay, Psaraftis (1980) showed that, within an

aircraft class, a complete order can be inferred under the assumptions that no time window restrictions exist

and that all aircraft of the set have the same cost function. Briskorn & Stolletz (2014) showed that such

complete orders within aircraft classes also exist, if a time window order (see Definition 2) exists for all pairs

of aircraft within a class and if class specific piecewise linear convex cost functions are given.

Definition 2. Time window order. Two aircraft a and a′ of the same aircraft class have a time window

order a ≺ a′ if Ta < Ta′ ⇒ La ≤ La′ ∧ La < La′ ⇒ Ta ≤ Ta′ .

Briskorn & Stolletz (2014) showed that scheduling two aircraft a and a′ of the same class according to

their time window order is optimal by proving that swapping a and a′ cannot improve the objective value.

Different to Briskorn & Stolletz (2014), we relax the assumption of class specific piecewise linear convex

cost functions and assume aircraft specific linear cost functions instead, i.e., we allow that aircraft a and a′

of the same class have different cost coefficients Ca 6= Ca′ . These cost coefficients, in practice, depend on,

e.g., the number of passengers aboard an aircraft or the price segment of the carrier (premium or low cost).

In order to determine aircraft orders within aircraft classes, we introduce the concept of cost compliance.

Definition 3. Cost compliance. Two aircraft a and a′ with time window order a ≺ a′ are cost compliant if

aircraft a has the same or a higher cost coefficient than aircraft a′: a ≺ a′ ⇒ Ca ≥ Ca′ .

A strict order within a pair of aircraft a and a′ of the same class can be precalculated if a time window

order exists and the aircraft are cost compliant.

Theorem 2. It is always optimal to schedule aircraft a and a′ of the same class in their corresponding time
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window order if they are cost compliant:

δaa′ = 1 ∀ a, a′ ∈ A : Sab = Sa′b ∧ Sba = Sba′ ∀ b ∈ A \ {a, a′}, (same aircraft class) (14)

Ta ≤ Ta′ ∧ La ≤ La′ , (time window order a ≺ a′) (15)

Ca ≥ Ca′ (cost compliance) (16)

Proof. We consider two cases:

Case 1: The time windows of aircraft a and a′ do not overlap. In this case, scheduling a′ before a is not

feasible and a must be scheduled before a′. Note that Theorem 1 applies in this case.

Case 2: The time windows of aircraft a and a′ overlap with La ≥ Ta′ . Consider a feasible aircraft schedule

S with xa > xa′ (a′ is scheduled before a) and assume time window order (Ta ≤ Ta′ ∧ La ≤ La′) and cost

compliance (Ca ≥ Ca′). We proof that swapping a and a′ cannot increase the objective value: We generate

a new schedule S̄ where we swap a and a′ and schedule aircraft a at x̄a = xa′ and aircraft a′ at x̄a′ = xa.

This schedule S̄ is feasible with regard to other aircraft since a and a′ are separation identical, and it is

feasible with regard to possible time windows since Ta ≤ Ta′ ≤ xa′ = x̄a < xa = x̄a′ ≤ La ≤ La′ . From

cost compliance (17) and xa′ = x̄a < xa = x̄a′ , we can conclude through transformations (18) - (23) that the

objective value O(S̄) = Ca(x̄a−Ta) +Ca′(x̄a′ −Ta′) of the new schedule S̄ where a and a′ are swapped (and

a is scheduled before a′ according to their time window order) is better than or equal to the objective value

O(S) = Ca(xa − Ta) + Ca′(xa′ − Ta′) of the original schedule S:

Ca ≥ Ca′ (17)

⇔ Ca(x̄a − xa) ≤ Ca′(xa′ − x̄a′) (18)

⇔ Cax̄a − Caxa ≤ Ca′xa′ − Ca′ x̄a′ (19)

⇔ Cax̄a + Ca′ x̄a′ ≤ Ca′xa′ + Caxa (20)

⇔ Cax̄a + Ca′ x̄a′ − CaTa − Ca′Ta′ ≤ Ca′xa′ + Caxa − CaTa − Ca′Ta′ (21)

⇔ Ca(x̄a − Ta) + Ca′(x̄a′ − Ta′) ≤ Ca(xa − Ta) + Ca′(xa′ − Ta′) (22)

⇔ O(S̄) ≤O(S) (23)

Pruning Rules of Type III: Dominant Snow Removal Patterns for Homogeneous Runways

For many instances with homogeneous runways (see Definition 4), it is possible to precalculate a snow

removal pattern (see Definition 5) which dominates all other possible snow removal patterns.
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Definition 4. Homogeneous runways. We call a set of runways R̄ homogeneous if all runways require the

same amount of time for a snow removal activity (Pr = Pr′ ∀ r, r′ ∈ R̄) and if they allow for the same

operation modes, i.e., an aircraft that can take-off or land on a runway r ∈ R̄ can also take-off or land at all

other runways r′ ∈ R̄, r′ 6= r.

Definition 5. Snow removal pattern. We refer to a snow removal pattern P as an |R|-tuple of triples

(ri, gi, ei), formally P :=
(
(r1, g1, e1), (r2, g2, e2), . . . , (r|R|, g|R|, e|R|)

)
. Herein, triple (ri, gi, ei) defines the

i-th snow removal activity in non-decreasing order of snow removal start times with ri ∈ R denoting the

runway being cleared, gi ∈ G with gi = g : ρrig = 1 denoting the assigned snow removal group and ei denoting

the earliest possible start time of the i-th snow removal activity. We calculate earliest possible start times ei

based on preceeding snow removals and sequence-dependent setup times Qrs. Due to the order of the triples,

ei ≤ ei+1 ∀ i ∈ 1, 2, . . . , |R| − 1 holds.

Each snow removal pattern P contains each runway r ∈ R exactly once since each runway is cleared

exactly once within the planning horizon. Thus, only a finite number of different snow removal patterns

exists. P denotes the finite set of all possible snow removal patterns and is bounded by |P| = |R|! · |G||R|.

Similar to the concept of active schedules (cf. Giffler & Thompson, 1960), we introduce pseudo-active

snow removal patterns.

Definition 6. Pseudo-active snow removal pattern. A snow removal pattern P′ is called pseudo-active if

and only if no other snow removal pattern P exists in which the i-th snow removal (i = 1, 2, . . . , |R|) can be

started (and, given homogeneous runways, also finished) earlier. Formally, P′ :=
(
(r′1, g

′
1, e
′
1), (r′2, g

′
2, e
′
2), . . . ,

(r′|R|, g
′
|R|, e

′
|R|)

)
is pseudo-active if e′i = minP∈P{ei} ∀ i ∈ 1, 2, . . . , |R| holds.

Extending a snow removal pattern with actual start times for each snow removal activity yields a snow

removal schedule.

Definition 7. Snow removal schedule. A snow removal schedule S extends a snow removal pattern and is an

|R|-tuple of quadruples (ri, gi, ei, σi), formally S :=
(
(r1, g1, e1, σ1), (r2, g2, e2, σ2), . . . , (r|R|, g|R|, e|R|, σ|R|)

)
where σi denotes the start time of the i-th snow removal.

Note that a snow removal schedule is feasible if and only if ei ≤ σi ∀ i ∈ 1, 2, . . . , |R| holds.

A snow removal pattern is dominant if it can be extended to an optimal snow removal schedule and, thus,

enables an optimal aircraft schedule. An optimal snow removal schedule must always consider the actual

air traffic in the planning horizon and requires complete information about occuring aircraft. A dominant

snow removal pattern, however, can often be precalculated in advance, independently from the occuring air

traffic. Finding a dominant snow removal pattern allows for fixing binary variables δrs ∀ r, s ∈ R, r 6= s,

ρrg ∀ r ∈ R, g ∈ G and φrs ∀ r, s ∈ R, r 6= s during preprocessing.
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Snow removal sequence: R2 → R1
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t

1

2

R1
U1

σ2

R2
U2

σ1

(a) Runway availability of S

Snow removal sequence: R1 → R2

available runways

t

1

2

R1
U1

σ1

R2
U2

σ2

(b) Runway availability of S∗

Figure 1: Example: S∗ outperforms S in terms of runway availability

Theorem 3. For homogeneous runways, a snow removal pattern P∗ :=
(
(r∗1 , g

∗
1 , e
∗
1), (r∗2 , g

∗
2 , e
∗
2), . . . , (r∗|R|,

g∗|R|, e
∗
|R|)

)
is dominant, i.e., it allows at least one snow removal schedule which is optimal with regard to the

Objective function (1), if

1. snow removal pattern P∗ is pseudo-active and

2. all runways are cleared in non-decreasing order with regard to their parameter Ur.

Proof. In the following, we show that we can always construct an optimal snow removal schedule S∗ by

extending a pseudo-active snow removal pattern P∗ =
(
(r∗1 , g

∗
1 , e
∗
1), (r∗2 , g

∗
2 , e
∗
2), . . . , (r∗|R|, g

∗
|R|, e

∗
|R|)

)
with

Ur∗1
≤ Ur∗2

≤ . . . ≤ Ur∗|R|
if runways are homogeneous. Consider a feasible and optimal snow remo-

val schedule S =
(
(r1, g1, e1, σ1), (r2, g2, e2, σ2), . . . , (r|R|, g|R|, e|R|, σ|R|)

)
. We construct a schedule S∗ =(

(r∗1 , g
∗
1 , e
∗
1, σ1), (r∗2 , g

∗
2 , e
∗
2, σ2), . . . , (r∗|R|, g

∗
|R|, e

∗
|R|, σ|R|)

)
extending dominant snow removal pattern P∗ with

snow removal start times σi∀i = 1, 2, . . . , |R| of the optimal snow removal schedule S. From schedule S being

feasible (ei ≤ σi ∀ i ∈ 1, 2, . . . , |R|) and pattern P∗ being pseudo-active (e∗i = minP∈P{ei} ∀ i ∈ 1, 2, . . . , |R|),

it follows that e∗i ≤ ei ≤ σi ∀ i = 1, 2, . . . , |R| and, thus, schedule S∗ is feasible. In schedule S∗, all homoge-

neous runways are cleared in non-decreasing order with regard to their parameter Ur. Hence, Schedule S∗

has the same or a better runway availability profile than schedule S, i.e., at every point in time, schedule

S∗ provides at least as many available runways than schedule S (cf. Figure 1). Consequently, S∗ allows the

same aircraft schedule and, therefore, the same objective value than S and is also optimal with regard to the

Objective function (1).

Since the number of runways and snow removal groups at airports is rather small, we can enumerate all

possible snow removal patterns in P in order to find a dominant pattern.

4.3. Problem Specific Valid Inequalities

Beasley et al. (2000) propose different valid inequalities which can be adapted to our model. We derive
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two new sets of valid inequalities for snow removal activities. Although they are redundant in the MIP

formulation due to a combination of Constraints (2) and (12), they tighten the LP relaxation.

Valid Inequalities I: Order between Snow Removal and Aircraft on the Same Runway

If an aircraft a is scheduled on runway r and the aircraft’s target time Ta is later than the time Ur at

which operations on runway r become unsafe, snow removal on runway r must be completed before aircraft

a is scheduled and, thus, δra = 1. Consequently, for all pairs of aircraft a and runways r with Ur < Ta, the

following inequalities hold:

δra ≥ yar ∀ a ∈ A, r ∈ R : Ur < Ta (24)

Valid Inequalities II: Order between Global Snow Removals and Aircraft

If the target time Ta of an aircraft a is later than all times Ur at which the different runways become

unsafe, at least one snow removal has to be completed before aircraft a can be scheduled. Consequently, for

all aircraft a with Ur < Ta ∀ r ∈ R, the following inequalities hold:

∑
r

δra ≥ 1 ∀ a ∈ A : Ur < Ta ∀ r ∈ R (25)

4.4. Start Solution Heuristic

In order to derive an initial start solution (incumbent) for a problem instance I, we map I→ I′ to obtain

a less complex and easy to solve instance I′. I′ is designed to make maximal use of the proposed pruning

rules. To derive I′ from I, we set all separation requirements S′ab between pairs of aircraft a and b to the

constant S′, where S′ equals the minimum of all separation requirements: S′ab = S′ ∀ a, b ∈ A : a 6= b where

S′ = mina,b∈A:a6=b(Sab). Hence, in I′, all aircraft are separation identical and belong to the same aircraft

class. Thus, pruning rules of type I and II (cf. Section 4.2) yield a complete order of all aircraft. This allows

for solving I′ efficiently even for a large number of aircraft by applying the MIP given through Objective

function (1) and Constraints (2)-(12), (24), and (25). From the optimal solution of I′, we save the order

of activities (aircraft and snow removals) defined by variables δ′∗ij ∀ i, j ∈ A ∪ R : i 6= j and the optimal

snow removal schedule defined by variables v′∗r ∀ r ∈ R and ρ′∗rg ∀ r ∈ R; g ∈ G. We use this information

to construct an initial solution for I by solving an instance Iini which equals instance I with fixed values

δij = δ′∗ij ∀ i, j ∈ A ∪ R : i 6= j, vr = v′∗r ∀ r ∈ R, ρrg = ρ′∗rg ∀ r ∈ R; g ∈ G and φrs = φ′∗rs ∀ r, s ∈ R; r 6= s.

For many instances, Iini yields a good initial solution for I. For some instances, Iini can be infeasible due to

adverse parameter values Sab.
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5. Results

To show the applicability and benefit of our methodology, we tested it on real-world data from Munich

International Airport. In Section 5.1, we describe the setup and design of our computational study. We

introduce a practice-oriented benchmark heuristic that mimicks the scheduling procedure applied manually

by runway managers and air traffic controllers. In Section 5.2, we compare solutions of our exact approach

against the benchmark solutions of the practice-oriented heuristic with regard to objective function values

and improvements. We also evaluate our approach with regard to computational times. Additionally, we

derive four key insights relevant for managers and decision makers in Section 5.3.

5.1. Experimental Design

Data Set

We generated all instances from a publicly available flight database obtaining real arrival and departure

data for a winter day at Munich International Airport. As a typical hub airport, Munich International

Airport has time windows in which mainly domestic flights arrive and depart and time windows in which

additional long-distance flights are handled. We considered flight operations recorded between 9 a.m. and

11 a.m. on November 27, 2017, as this time window contains a representative mix of arriving and departing,

domestic and long-distance flights with a typical mix of aircraft classes.

Regarding the runway system, we consider instances with either two homogeneous runways and one snow

removal group or with three homogeneous runways and two snow removal groups. We assume independent

runways, i.e., flight operations on one runway do not affect flight operations on other runways.

For instances with two runways and one snow removal group, we consider 45 flight operations per hour.

This equals the number of actual flight operations at Munich International Airport during snowfall. For

instances with three runways and two snow removal groups, we assume 60 flight operations per hour. For

both runway configurations, we consider instances with 30 to 75 aircraft. This corresponds to planning

horizons between 30 minutes (30 aircraft on three runways) and 100 minutes (75 aircraft on two runways).

To take into account that delays of larger aircraft with a higher number of passengers are more critical,

we use cost coefficients of 1, 2 and 3 for large, Boeing 757, and heavy aircraft respectively.

Scenarios

We distinguish between two scenarios which differ in their characteristics regarding weather and snowfall:

Scenario 1: Beginning snowfall. At the start of the planning horizon, all runways have the same conditions,

and, due to snowfall, operations become unsafe at the same point in time on all runways, i.e., U1 = U2 =
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. . . = UR ∀ r ∈ R. We assume that runways become unsafe 25 minutes after the beginning of the planning

horizon.

Scenario 2: Continuous winter operations. Runways have previously been cleared from snow, ice, and slush

at different times. Thus, the times at which runways become unsafe mainly depend on the times elapsed

since the previous snow removals and, consequently, runways become unsafe at different times, i.e., U1 6=

U2 6= . . . 6= UR ∀ r ∈ R. We assume that the first runway becomes unsafe 10 minutes after the beginning

of the planning horizon and that the second runway becomes unsafe 25 minutes after the beginning of the

planning horizon. In case of three runways, we assume that the third runway becomes unsafe 40 minutes

after the beginning of the planning horizon.

Naive Scheduling Approach

A simple and naive approach schedules snow removals on runways in the same order as runways become

unsafe. On each runway, the snow removal starts as soon as the runway is unsafe and a snow removal group

is available. We consider this naive approach since it is the simplest and most obvious way to schedule snow

removals. Most airports, however, follow more advanced heuristic approaches yielding significantly better

schedules.

Practice-Oriented Benchmark Heuristic

To derive meaningful insights regarding the benefit of our solution approach, we compare our optimal

schedules against schedules generated by a practice-oriented heuristic that mimicks the decisions of human

planners at airports and air traffic control. This benchmark heuristic is based on observations and talks with

practitioners at airports and follows a stepwise sequential approach:

Step 1 Schedule all snow removals within the planning horizon by sequentially applying the following two

rules:

1. Maximize runway availability in order to increase the flexibility for scheduling aircraft. This is

equivalent to minimizing the time spans in which runways are unavailable because they are unsafe

or are being cleared.

2. Start snow removal activities as late as possible in order to delay the necessity for the next snow

removals in the next planning period.

Step 2 Assign runways and take-off or landing times to aircraft by scheduling them in parallel on all runways

on a FCFS basis according to their target time.
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Figure 2: Distribution of runtimes for instances with 75 aircraft, two runways and one snow removal group

We also consider a variant of this heuristic which uses optimization in step two to schedule aircraft optimally.

For more complex instances with two or more snow removal groups and three or more runways, the options

to schedule snow removals in step one rapidly increase. In these cases, the benchmark heuristic computes

solutions for the inherent maximization problem which are typically not found by human planners. Thus, the

heuristic typically constructs better schedules than human planners and we treat solutions of the benchmark

heuristic as lower bounds for manually created solutions.

5.2. Computational Results

We computed all results on an Intel i7-8700K with 3.7 GHz and 32 GB RAM using Python 3.7 with

Gurobi 8.1. When solving the same problem instance multiple times, we had observed a high variance in

computational times. This variance results from the degeneracy in the LP relaxation of the MIP: If a problem’s

LP relaxation has multiple optimal solutions, the solver chooses one of these LP solutions randomly. Resulting

cutting planes and branching decisions modify the search tree and, thus, lead to varying computational times.

In order to derive meaningful conclusions about the performance of our approach, we solved each instance 60

times with varying random seeds. Figure 2 shows exemplary the distributions of computational times for the

two instances with 75 aircraft, two runways and one snow removal group (Scenario 1 and Scenario 2) using

all pruning rules, valid inequalities, and heuristically derived start solutions.

We observe that most computational times (between .25-quartile and .75-quartile) are closely centered

around the median. For some random seeds, we notice considerably lower or higher computational times

with upper outliers being more extreme (cf. Figure 2).

In the following, we report the median of computational times.

We consider 16 instances: Scenario 1 and Scenario 2 for two and three runways and for 30, 45, 60, and

75 aircraft. Table 3 shows the results for all computed instances. For each instance, we report the objective

function value znaive of the naive scheduling approach and the objective function value zheu/FCFS of the
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practice-oriented heuristic as a benchmark solution. We also report the objective function value zheu/opt

of a variant of the practice-oriented heuristic which uses optimization to schedule aircraft optimally. With

∆heu/opt = (zheu/FCFS − zheu/opt)/zheu/FCFS we measure the improvement through state-of-the-art aircraft

scheduling over the FCFS based aircraft scheduling approach used in practice given that snow removals are

scheduled with the practice-oriented heuristic. Additionally, we show the objective function value zMIP of

our integrated solution approach and the improvement ∆MIP = (zheu/FCFS − zMIP)/zheu/FCFS through our

solution methodology over the practice-oriented heuristic. For our MIP formulation, we report computational

times for five model configurations:

• Configuration C1: MIP (1) - (12)

• Configuration C2: MIP and pruning rules of type I and II

• Configuration C3: MIP and pruning rules of type I - III

• Configuration C4: MIP, pruning rules of type I - III, and valid inequalities I and II

• Configuration C5: MIP, pruning rules of type I - III, valid inequalities I and II, and heuristically derived

start solution. We report the computational time of the start heuristic in brackets.

Additionally, in the last column, we show the required computational time of configuration C5 to compute

solutions which deviate less than 1% from the optimal objective function value zMIP.

Reduction of Weighted Delay through an Integrated Approach

An analysis of znaive shows that the naive scheduling approach constructs solutions significantly worse

than all other considered approaches and is not suitable for an application in practice.

The comparison of the objective function values of the practice-oriented heuristic zheu/FCFS and the

optimization model zMIP prove that our integrated approach significantly reduces weighted delay. In 15 out

of 16 instances, we observe improvements ∆MIP of up to 77%. These improvements reflect the benefit of an

optimal aircraft schedule with integrated snow removal decisions. Improvements ∆heu/opt show that using an

optimal aircraft schedule instead of a FCFS based aircraft schedule within the practice-oriented sequential

heuristic reduces weighted delay by only 20% on average. Comparing ∆MIP and ∆heu/opt indicates that, for

more complex instances with at least three runways and 45 aircraft, substantial weighted delay reductions

of 31-45% originate from an integration of the scheduling decisions for snow removals and aircraft. Since

solutions of the benchmark heuristic are lower bounds for solutions created by human planners, we expect

the actual improvements through our integrated approach to be even higher.
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Improvements of Computational Times through Pruning Rules, Valid Inequalities and the Start Solution

Heuristic

Our computational results show that only for 5 out of 16 instances, the original MIP formulation (C1)

yields a proven optimal solution within a time limit of one hour.

For all instances, we observe significant improvements in the computational time by using pruning rules.

The application of pruning rules of type I and II (C2) allows us to solve 13 of 16 instances to optimality

within one hour.

Pruning rules of type III (C3), which compute an optimal snow removal pattern, allow us to solve 14

instances to optimality and, additionally, reduce the computational times by 78-95% in Scenario 1 (instances

2-6). In Scenario 2, pruning rules III yield an optimal snow removal pattern only for two runways and one

snow removal group (instances 9-12). In these cases, they reduce computational times by up to 33%.

Valid inequalities (C4) yield a significant speed-up for five instances and allow us to solve 15 instances

to optimality. Especially for instances 14-16 where pruning rules III do not yield an optimal snow removal

pattern, the proposed valid inequalities improve computational times by up to 26%. For most instances in

which pruning rules III yield a significant speed-up, improvements through valid inequalities are limited.

By using heuristically derived initial start solutions (C5), computational times improve up to 25%. Such

start solutions can be computed within a few seconds and are particularly helpful to find good solutions early

in the branch-and-bound procedure.

We compute schedules with less than 1% deviation from the optimal objective function value for all

instances in less than one minute by using all of our speed-up techniques. Accordingly, it seems reasonable

to use our presented approach also heuristically by terminating the computation before a proven optimum

without optimality gap is obtained.

In a real-world setting, the proposed model can be used to compute optimal schedules for a one-hour

time frame with a lead time of 15 minutes, in which the planned activities are fixed and cannot be changed

anymore. Since the model considers aircraft currently approaching the runways, a recalculation of the optimal

schedule is necessary approximately every minute, when the situation on the taxiways or in the airspace near

the airport has changed, i.e., if aircraft have departed or landed or if new aircraft have entered the airspace

near the airport. In most cases, our presented exact solution methodology computes new optimal runway

schedules within a minute. When computational times of the exact approach become prohibitively large, we

suggest to use our approach heuristically to obtain very good runway schedules within a short amount of

time.
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5.3. Managerial Insights

Based on the results of Section 5.2, we derive four key insights for managers and decision makers dealing

with runway scheduling during winter operations:

• A naive scheduling approach is not suitable for an application in practice. Simple scheduling rules,

which start snow removals as soon as runways are unsafe and snow removal groups are available, yield

only poor solutions with high delay. In the case of beginning snowfall, these solutions are often by a

factor of 10 to 20 worse than optimal schedules.

• When applying the practice-oriented heuristic, human planners can follow guiding principles to find

good snow removal schedules in step one of the heuristic. An analysis of optimal schedules shows that

it is beneficial to avoid situations in which a runway has to be closed due to snow or ice without

having a snow removal group available for clearing it. This often leads to optimal schedules where a

(preceding) snow removal on a runway already starts before operations on that runway would become

unsafe so that a succeeding snow removal on the next runway can start on time. Furthermore, human

planners can use the concept of dominant snow removal patterns. If dominant snow removal patterns

are precalculated, planners need to consider only schedules that feature such dominant patterns.

• For airports with at most two runways, applying the investigated practice-based heuristic may yield good

schedules if optimization methods are used to schedule aircraft. For at most two runways, the practice-

based heuristic often finds good snow removal schedules in step one of the heuristic but fails to generate

efficient aircraft schedules in step two when aircraft are scheduled on a FCFS basis. In these cases,

using optimization to schedule aircraft in step two yields good results and reduces weighted delay up

to 29%.

• An integrated scheduling of snow removals and aircraft using our approach yields always optimal soluti-

ons and significantly reduces weighted delay. A substantial part of this delay reduction originates from

the integration of both scheduling decisions. Potential improvements increase with growing complexity

of the underlying scheduling decisions. For airports with at least three runways, our integrated runway

scheduling approach reduces weighted delay up to 77% compared to the practice-oriented heuristic.

6. Conclusion

In this paper, we presented an integrated optimization model for the runway scheduling problem during

winter operations. We modeled the problem as a mixed-integer linear program. In order to accelerate the

branch-and-bound procedure, we derived problem specific pruning rules and valid inequalities. Additionally,
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we presented a method to derive an initial start solution for the solver heuristically. The value of our work

was substantiated by our computational study based on real-world data from Munich International Airport.

The numerical experiments showed significant reductions of weighted delay compared to a manual scheduling

process through a human planner. We showed that our approach can solve 15 out of 16 instances optimally

within a time limit of one. For all instances, our approach yields very good solutions deviating less than 1%

from the optimal objective function value in less than one minute. Hence, the presented method can also

be used as a heuristic by terminating the computation early. Based on our computational study, we derived

several managerial insights. The results of our work enable airport operators and air traffic controllers to

integrate their planning and, thus, to achieve better overall runway schedules for winter days with considerable

snowfall.
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